Reusing of Industrial Polymeric Waste Materials as Fillers in Radiation Vulcanized Rubber Based Composites

By

Khaled Farouk Maghawry El Nemr B.Sc. Faculty of Science, Ain Shams University, 1987 Master in Environmental Sci., Ain Shams University, 1998

A Thesis Submitted in Partial Fulfillment of the Requirement for the Doctor of Philosophy

In Environmental Science

Department of Biological and Physical Science Institute of Environmental Studies & Research Ain Shams University

Reusing of Industrial Polymeric Waste Materials as Fillers in Radiation Vulcanized Rubber Based Composites

By

Khaled Farouk Maghawry El Nemr

B.Sc. Faculty of Science, Ain Shams University, 1987 Master in Environmental Sci., Ain Shams University, 1998

A Thesis Submitted in Partial Fulfillment of the Requirement for the Doctor of Philosophy In Environmental Science

Department of Biological and Physical Science Institute of Environmental Studies & Research Ain Shams University

Under the Supervision of:

Prof. Dr. Abdel Gwad RabieProfessor of Organic chemistry
Ain-Shams University

Prof. Dr. Ahmed Ali El MiligyProfessor of Radiation Chemistry
Atomic Energy Authority

Reusing of Industrial Polymeric Waste Materials as Fillers in Radiation Vulcanized Rubber Based Composites

Thesis Advisors

Approved

Prof. Dr. A. M. Rabie Prof. Dr. A. A. El Miligy

Prof. Dr. M. G. El Malky

Head of Department of Biological and Physical Sciences

AKNOWLEDGEMENT

I wish to express my greatest thanks to *Prof. Dr. Abdel Gwad M. Rabie*, Prof. of Organic Chemistry, Chemistry Dept. Faculty of Science, Ain Shams University, for his encouragement, supervision and helpful discussion throughout the course of this investigation.

I wish to express my sincere esteem and deepest thanks to *Prof. Dr. Ahmed A. El Miligy*, Prof. of Radiation chemistry, National Center for Radiation Research and Technology (NCRRT), AEA, for his continuous guidance and encouragement during the course of this work as well as his fruitful discussion and help in the final accomplishment of this work.

I wish also to my deep grateful thanks and sincere esteem to *Prof. Ass. Dr. Hussien Ali Youssef*, Prof. Ass., of polymers and radiation chemistry, NCRRT, AEA, for his valuable help, sincere and continuous guidance during all the stages of this work as well as his fruitful discussion.

My great thanks and deepest gratitude to *Prof. Ass. Dr. Nawal M. shaltout*, Prof. Ass., of polymers and radiation chemistry, NCRRT, AEA, for her valuable help sincere and continuous guidance during this work.

My deepest thanks are due to **Prof. Ass. Reda M. Radwan,** Radiation Physics Dept. for his help and cooperation in electrical measurements.

Finally, thanks are expressed to the Head of Radiation Chemistry Department, NCRRT, AEA for his continuos encourage. Also, many thanks are due to my colleagues in the department.

إعادة إستخدام مخلفات بوليمرية صناعية لاستخدامها كمواد مالئة في مترا كبات مطاطية مفلكنة إشعاعيا

رسالة مقدمة من الطالب خالد فاروق مغاورى النمر بكالوريوس علوم – كلية العلوم – جامعة عين شمس 1987 ماجستير العلوم البيئية (قسم العلوم البيولوجية والطبيعية) جامعة عين شمس 1998

لاستكمال متطلبات الحصول على درجة دكتوراه فلسفة

فی

العلوم البيئية

قسم العلوم البيولوجية والطبيعية معهد الدراسات والبحوث البيئية جامعة عين شمس

Reusing of Industrial Polymeric Waste Materials as Fillers in Radiation Vulcanized Rubber Based Composites

By

Khaled Farouk Maghawry El Nemr

B.Sc. Faculty of Science, Ain Shams University, 1987 Master in Environmental Sci., Ain Shams University, 1998

This thesis Towards A Ph.D. Degree in Environmental Science Has Been Approved by:

Name Signature Prof. Dr. A. M. Rabie Professor of Organic Chemistry Faculty of Science, Ain Shams University Prof. Dr. A. A. El Miligy Professor of Radiation Chemistry National center for Radiation Research and Technology **Atomic Energy Authority** Prof. Dr. E. A. Hegazy Professor of Radiation Chemistry and Chairman of National center for Radiation Research and Technology, Atomic Energy Authority Prof. Dr. E. M. Abdel - Bary Professor of polymer Chemistry, Faculty of Science, Mansoura University 2005 صفحة الموافقة على الرسالة

إعادة إستخدام مخلفات بوليمرية صناعية لاستخدامها كمواد مالئة

Abstract

Industrial polymeric waste materials of different kinds and magnitudes are produced as a result of manufacture of various polymeric articles. These kinds of waste materials would be expected to contribute to environmental pollution. Essentially, this investigation is aiming to recycle different kinds of polymeric waste materials, namely polyethylene terephthalate fiber (PET) and polytetrafluoroethylene filled with carbographite (PTFE-CG) as fillers with different e;astomers, which have many application.

The properties of electron beam (EB) vulcanized acrylonitrile-butadiene rubber (NBR) or its blend with polyvinyl chloride (PVC) reinforced by PET fibers were studied. Polyfunctional monomers namely, trimethylol propane triacrylate (TMPTA) as radiation coagent for NBR and pentaerthritol tetraacrylate (PETA) for NBR-PVC, as well as the bonding system Resorcinol / Hexamethylenetetramine / Silica (RHS), to enhance fiber / elastomer adhesion, were used to maintain maximum properties. PET waste fibers were found to enhance the mechanical properties namely, tensile strength, hardness, stiffness and modulus. Moreover, the physico-chemical properties like soluble fraction, swelling in solvent, anisotropic solvent swelling, and volume fraction of swollen rubber were remarkably improved. Also, it was found that the thermal stability of prepared composites was increased, whereas the electrical conductivity was reduced.

The property of EB vulcanized NBR rubber enhanced by PETA and reinforced by 40 phr silica, filled with varying contents of PTFE-CG powder scrap was studied.

It was found that the inclusion of PTFE-CG powder scrap up to 40 phr in NBR rubber resulted in moderately decrease in tensile strength with respect to unloaded ones, while modulus was remarkably improved. The results obtained showed that the prepared composites have low friction coefficient and high abrasion resistance. Also, it was

found that the thermal stability of prepared composites was increased. Moreover, the prepared composites showed good resistance swelling in fuel A (gasoline) at high temperature $100\,^{\circ}\text{C}$.

Key Words:

Polytetrafluoroethylene- Cabographite, Elctron beam, Bonding system, Polyethylene terephthalate fiber, Friction, Abrasion, Thermal stability, Tensile strength

Contents

		Page
I. IN	TRODUCTION	1
I. 1	Crosslinking reactions	2
I. 2	Chemical vulcanization of rubber	3
I.3	Polymer curing by radiation	4
I.3.1	•	5
I.3.2	Mechanism of reaction by radiation	6
I.4	Radiation effects on polymers	9
I.4.1	Crosslinking and degradation	9
I.5	Particle and fiber reinforced elastomers	16
I.6	Effect of bonding agent in short fiber elstomer composites	16
I.7-	Polymer waste problem	17
I.7.1	Polyethylene terephthalate waste (PET)	18
	Polytetrafluoroethylene waste (PTFE) & PTFE-CG	19
I.8	Basic approaches to recycling and of polymeric	
	materials	22
I.8.1	Material recyling	22
	Chemical recyling.	23
	Incineration	24
I.9	The status of radiation-assisted polymer recycling	24
I.10	Summary of application of radiation in polymer recycling	25
II. I	LITERATURE REVIEW	27
II.1	Studies on NBR Rubber	27
II.2	Studies on NBR-PVC blends	32
II.3	Effect of radiation promotors (Coagents) on the	
	crosslinking of polymers	37
II.4	Studies on short fibers reinforced elastomer	41
II.5	Irradiated virgin teflon	47
II.6	Studies on scrap PTFE	52
II.7	Fluoroplastic powder (PTFE) as additive in polymers	54
III. I	MATERIALS AND . TECHNIQUES	57
III.1	MATERIALS	57
III-1	.1 Matrix	57
	A: Acrylonitrile butadiene rubber (NBR)	57
	B: Acrylonitrile butadiene rubber / Polyvinyl chloride	
	NBR/PVC blend	57
III-1	.2 Functional monomers (Coagents)	58
	A: Diethylene glycol diacrylate	58
	B: Trimethylol propane triacrylate	58
	C: Pentaerthritol tetracrylate	59

III.1.3	Bonding system	60
	Resorcinol	60
	Hexamethylenetetramine	61
	Silica (Precipitated)	61
III.1.4	Antioxidant	61
III.1.5	Activators	62
	1- Zinc Oxide	62
	2- Stearic acid	62
III.1.6	Fillers	63
	1- Polyester Fibers Waste	63
	2- Polytetrafluoroethylene (PTFE)/Carbographite	
	(CG) waste	63
III.2	TECHNIQUES	63
III.2.1	Preparation of irradiated pulverized fine powder	
	of waste PTFE-CG scrap	64
III.2.2	Preparation of samples	64
III.2.3	Irradiation procedure	66
III.2.3	MEASUREMENTS	66
III.3.1	Mechanical properties	66
	1- Ultimate tensile strength	67
	2- Elongation at break point	69
	3- Tensile modulus at a given elongation	69
	4- Young"s modulus	69
	5- Abrasion measurement	69
III.3.2	Physico-Chemical measurements	70
	1- Soluble fraction	70
	2- Swelling ratio	71
	3- Anisotropic swelling	72
	4- Volume fraction of swollen rubber	73
	5- Crosslink density	73
III.3.3	Coefficient of friction measurements	74
	Hardness measurements	76
	Thermogravimetric analysis measurements	76
III.3.6	Scanning Electron Microscope	77
	Particle size analysis measurements	77
	Electrical conductivity measurements	77
	Effect of fuel on NBR composites	78
	ESULTS AND DISCUSSION	80
PART	.I	80
IV.1	Effect of polyfunctional monomers on radiation	
	vulcanization of acrylonitrile- butadiene rubber	80
IV.1.1	Mechanical properties	81

A- Tensile strength 81	1
B- Tensile modulus at 100 % elongation	3
C- Elongation at break point %	5
IV.1.2 Physico-chemical properties	7
A- Soluble fraction87	7
B- Swelling ratio 87	7
C- Crosslinking density	0
D- Volume fraction of swollen NBR rubber	2
PART II	4
IV.2 The influence of bonding system on the interfacial	
adhesion between rubber matrix and PET fibers 94	4
IV.1.1 Mechanical properties 95	5
A- Tensile strength	5
B- Tensile modulus at 100 % elongation	5
C- Elongation at break point %	8
	00
	02
J 1 1	02
	04
\mathcal{E}	04
	07
IV.3 Short polyethylene terepthalate fiber reinforced	
	07
IV.1.4 Effect of fiber concentration on physico-mechanical	
and physico-chemical properties of NBR rubber	
1 1	08
· · · · · · · · · · · · · · · · · · ·	08
<u></u>	08
<u> </u>	13
•	15
	17
S .	19
	21
	21
	23
C-Volume fraction of swollen NBR rubber	
vulcanizate 12	26
	26
IV.3.4 Scanning electron microscope study for NBR	-
	29
1	29
	31

IV.3.4.3 Effect of irradiation dose	131	
IV.3.5 Thermal analysis studies of NBR composites		
IV.3.5.1 Effect of fiber loading on thermal decomposition		
of NBR composites at constant irradiation dose	134	
IV.3.5.2 Effect of irradiation dose on thermal decomposition		
of NBR at a constant fiber loading	139	
IV.3.6 Electrical properties of NBR composites	144	
IV.3.6.1 Voltage-current characteristics	144	
IV.3.6.2 DC Electrical conductivity	150	
PART IV	152	
IV.4 Short PET fiber-reinforced acrylonitrile butadiene		
rubber -Polyvinyl chloride (NBR-PVC) composites	153	
IV.4.1 Effect of fiber concentration on physico-mechanical		
and physico-chemical properties of NBR-PVC		
composites in presence of bonding system	153	
IV.4.2 Mechanical properties	153	
A- Tensile strength	154	
B- Elongation at break	157	
C- Tensile modulus at 25 % elongation	165	
D- Young's modulus	168	
E- Hardness	171	
III.4.3 Physico-Chemical properties	174	
A- Soluble fraction	174	
B- Swelling ratio	176	
C- Anisotropic swelling	179	
D- Volume fraction of swollen NBR-PVC vulcanizate	179	
IV.4.4 Scanning electron microscopy of NBR-PVC composites	182	
IV.4.4.1 Effect of fiber concentration	182	
IV.4.4.2 Effect of irradiation dose	185	
IV.4.5 Thermal analysis studies of NBR-PVC composites	185	
IV.4.5.1 Effect of fiber loading on thermal decomposition		
of NBR-PVC composites at constant irradiation dose	185	
IV.4.5.2 Effect of irradiation dose on thermal decomposition		
of NBR-PVC at a constant fiber loading	192	
IV.4.6 Electrical properties of NBR-PVC composites	197	
IV.4.6.1 Voltage-current characteristics	197	
IV.4.6.2 DC Electrical conductivity	201	
PART. V	205	

IV.5 Radiation vulcanization of acrylonitrile butadiene Rubber filled with polytetrafluoroethylene-carbographite Powder	205
IV.5.1 Effect the concentration of PTFE-CG powder	
on physico- mechanical and physico-chemical	
properties of NBR composites in presence of silica	206
IV.5.2 Physico-mechanical properties	207
IV.5.2.1 Mechanical properties	207
A- Tensile strength	207
B- Elongation at break	213
C- Tensile modulus at 100 % elongation	219
IV.5.3 Physico-Chemical properties	219
A- Soluble fraction	219
B- Swelling ratio	224
C-Swollen rubber volume fraction	227
IV.5.4 Coefficient of friction measurements	229
IV.5.5 Abrasion resistance measurements	234
IV.5.6 Scanning electron microscope	236
IV.5.6.1 Effect of PTFE-CG powder loading	236
IV.5.7 Thermal analysis measurements	239
IV.5.7.1 Effect of PTFE-CG powder loading on thermal	
decomposition of NBR composites at constant	
irradiation dose	239
IV.5.8 Effect of fuels on NBR composites	246
SUMMARY AND CONCLUSIONS	254
REFERENCES.	262
ARABIC SUMMARY	

List of figures

Fig. (1)	A laboratory plasticorder mixer type 350 S.	65
Fig. (2)	Electron beam accelerator	68
Fig. (3)	Apparatus for determination of coefficient of friction.	75
Fig. (4)	Tensile strength as a function of irradiation dose for NBR rubber enhanced with different polyfunctional monomers.	82
Fig. (5)	Tensile modulus at 100 % elongation as a function of irradiation dose for NBR rubber enhanced with different polyfunctional monomers	84
Fig. (6)	Elongation at break as a function of irradiation dose for NBR rubber enhanced with different polyfunctional monomers.	86
Fig. (7)	Soluble fracion as a function of irradiation dose for NBR enhanced with different polyfunctional monomers .	88
Fig. (8)	Swelling ratio as a function of irradiation dose for NBR enhanced with different polyfunctional monomers .	89
Fig. (9)	The dependence of the number of crosslinked units per unit volume of NBR rubber in presence of different polyfunctional monomers on irradiation dose.	91
Fig. (10)	Effect of irradiation dose on V_r of NBR rubber enhanced with different polyfunctional monomers.	93
Fig. (11A)	Tensile strength as a function of irradiation dose for NBR rubber loaded with 5 phr chopped PET fiber treated and untreated by bonding system.	96
Fig. (11B)	Tensile strength as a function of irradiation dose for NBR rubber loaded with 10 phr chopped PET fiber treated and untreated by bonding system	96
Fig. (12A)	Tensile modulus at 25 % elongation as a function of irradiation dose For NBR rubber loaded with 5 phr chopped PET Fiber treated and untreated by bonding system.	97