

ثبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15-25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

EFFECT OF DIFFERENT BODY POSITIONS ON VENTILATION IN PATIENTS WITH UNILATERAL LUNG DISEASES

Thesis

Submitted for partial Fulfillment of the Requirement of the Master Degree in Physical Therapy

By MOHAMED ABD EL HALIM MOHAMED SHENDY B.Sc(2001)in physical Therapy.

Demonstrator at physical Therapy Department of Cardiopulmonary and Geriatrics Disorders

Faculty of Physical Therapy
Cairo University
2007

B

Supervisors

Dr. Al sayed Abd Elhameed Shanb

Assistant Professor of Physical Therapy for Cardiopulmonary Disorders and Geriatrics, Faculty of Physical Therapy,

AL soyed shows Cairo University.

Dr. Akram A. Aziz Sayed

Lecturer of Physical Therapy for Cardiopulmonary
Disorders and Geriatrics,
Faculty of Physical Therapy,
Cairo University

Dr. Wafa Mohamed Ahmed Ashor

Lecturer of Chest Diseases, Kasr El-Aini Hospital

Cairo University

بسم الله الرحمن الرحيم

(و أنزل الله عليك الكتاب و
الحكمة وعلمك ما له تكي
تعلم و كان فندل الله عليك
عنيما

صدق الله العظيم سورة النساء(آية 113)

ACKNOWLEDGMENT

Praise and thanks be to ALLAH, the most merciful for assisting and directing me to the right way.

I would like to thank **Dr. Al Sayed Abd El Hameed Shanb**, , Professor of Physical Therapy for Cardiopulmonary Disorders and Geriatrics, Faculty of Physical Therapy, Cairo University, for his great support and advice that gave me the confidence and encouragement to start and complete this study as the best as I could do.

My deepest thanks to **Dr. Akram A Aziz Sayed** Lecturer of Physical Therapy for Cardiopulmonary Disorders and Geriatrics, Faculty of Physical Therapy, Cairo University, for his constant supervision and advice to complete this work.

My gratitude appreciation wishes to Dr. Wafa Mohammed Ahmed, Lecturer of chest Faculty of medicine, Kasr al Aini Hospital Cairo University, for her sincere supervision, valuable advice, constructive criticism and continuous support.

My deepest thanks to **Dr. Khaled Aid Sobhy**, Professor of chest Faculty of medicine, Kasr al Aini Hospital, Cairo University, for his great support and advice.

Finally I'm very grateful to all participants who shared in this study. Without whom this work wouldn't have been possible

Effect of Different Body Positions on Ventilation in Patients with Unilateral Lung Diseases, By Mohammed abd El Haleem Mohammed Shendy. Faculty of Physical Therapy Cairo university, Department of Physical Therapy for cardiopulmonary disorders and geriatrics.

Supervisors: Prof. Dr. Al Sayed Abd El Hameed Shanb, Dr. Akram Abd El Aziz, Dr. Wafa Mohammed Ahmed. (Master Thesis)

Abstract

The aim of this study was to evaluate the effect of different body positions on ventilation in patients with unilateral lung diseases. Thirty patients with unilateral lung diseases their age ranged from 25 to 55 years old participated in this study. Ventilatory function test was performed for each patient after thirty minutes of assuming each of the following body positions (sitting, supine, side lying on the affected position and side lying on the unaffected position).

The results showed that there was highly improvement in ventilatory function at sitting position. There were statistically significant differences between sitting position and other positions and between lying on the unaffected and lying on the affected side.

It was concluded that sitting position is the best position for pulmonary ventilation and side lying on the unaffected position is the position of choice for improvement of ventilation perfusion ratio in patients with unilateral lung diseases.

*Keywords: Ventilatory function. Spirometry. Positioning. Unilateral lung diseases.

List of abbreviations

ALI	Acute lung injury.
ARDs	acute respiratory distress syndrome
ARF	acute respiratory failure
CaO ₂	arterial oxygen content
Cld	Dynamic lung compliance.
СОР	Colloid osmotic pressure.
COPD	Chronic obstructive pulmonary diseases
ERV	Expiratory Reserve Volume.
ESR	Erythrocyte sedimentation rate.
FBC	Full blood count
Fig	Figure
FIO ₂	Fraction of inspired oxygen
FRC	Functional residual capacity.
FEV ₁ / FVC	Timed forced expiratory volume-Forced vital capacity
HFOV	High frequency oscillatory ventilation
IC	Inspiratory Capacity.
ICU	Intensive care unit.
IRV	Inspiratory reserve volume
LDH	Lactate dehydrogenase.
LSD	Least significant differences
MEP	Mid expiratory pressure.
MVV	Maximum Voluntary Ventilation.
Рра	Partial Alveolar pressure.
PaCO2	partial arterial carbon dioxide pressure

PaO2	partial arterial oxygen pressure
PEFR	peak expiratory flow rate.
Pp1	Intapleural pressure.
PVR	Peripheral vascular resistance.
RR	Respiratory rate
RV	Residual volume
SD	Stander deviation
Sec	Second
TLC	Total lung capacity
ULD	Unilateral lung disease.
VC	Vital Capacity.
Vt	Tidal volume.
V/Q	Ventilation / perfusion ratio.
ΔV/ΔΡ	Change of volume/change of pressure.
WCC	White cells count

List of figures

Fig.	Title	Pages
1	Branching of airways; the bronchial tree.	9
2	Anatomic features of pleura.	10
3	Continuum of alveolar gas composition	14
4	Effect of altering the ventilation/perfusion ratio	15
5	Normal filtration and resorption of fluid in pleural space	19
6	Pleural effusion	20
7	Chest radiograph of a patient who had lung abscess	29
8	Spiro gram of lung volumes and capacities	53
9	Spirometer	56
10	Weight and height scale.	57
11	Measuring pulmonary function from sitting position.	61
12	Measuring pulmonary function from supine position.	62
13	Measuring pulmonary function from left side lying position.	63
14	Measuring pulmonary function from right side lying position.	64
15	The mean values of the pulmonary function in patients with ULD	70
16	The mean values of the pulmonary function in patients with lung abscess.	75
17	The mean values of the pulmonary function in patients with pleural effusion	81

List f Tables

Table	Title	Pages
1	Leading causes of pleural effusion in the United states.	22
2	Sensitivity of tests to distinguish Exudative from transudative effusions.	24
3	Tests indicated, According to the appearance of the pleural fluid.	25
4	Respiratory volumes and Capacities	53
5	Patient' Demographic data	67
6	The mean values of the pulmonary function in patients with ULD	69
7	The mean square values of the pulmonary in patients with ULD	71
8	The mean values of LSD of the pulmonary function in patients with ULD	72
9	The mean values of the pulmonary function in patients with lung abscess	74
10	The mean square values of the pulmonary function in patients with lung abscess	76
11	The mean values of LSD of the pulmonary function in patients with lung abscess	78
12	The mean values of the pulmonary function in patients with pleural effusion	80
13	The mean square values of the pulmonary function in patients with pleural effusion	82
14	The mean values of LSD of the pulmonary function from	84
	different positions in patients with pleural effusion	

CONTENTS

Introduction.	1
Literature Review.	7
• Structural organization of the pulmonary system.	7
Pleural diseases.	15
• Lung diseases.	27
• lung abscess.	27
Physical therapy intervention.	33
Pulmonary function.	47
Subjects, Material and Methods.	53
• Subjects.	53
Material	55
• Methods	58
Results.	
Discussion.	
Summary and conclusion. Recommendations. References.	
Arabic summary.	