

Ain Shams University Faculty of Science Chemistry Department

Novel study of some drugs and their complexes with certain transition metals "synthesis, characterization and biological activity"

Thesis submitted for the degree of PhD In Inorganic chemistry

Presented by

Hoda Ahmed Mohamed El-Sawy

M.Sc. (2015)

Chemistry department, Faculty of science, Cairo University

Supervised by

Prof. Dr. Mostafa M. H. Khalil

Prof. of inorganic chemistry, Faculty of science, Ain Shams University

Prof. Dr. Mostafa A. Radwan

Prof. of chemical engineering, Faculty of engineering, BUE University

Prof. Dr. Gehad G. Mohamed

Prof. of inorganic chemistry, Faculty of science, Cairo University

Dr. Walaa H. Mahmoud

Lecturer of inorganic chemistry, Faculty of Science, Cairo University

Ain Shams University Faculty of Science Chemistry Department

Novel study of some drugs and their complexes with certain transition metals "synthesis, characterization and biological activity"

Thesis Submitted by

Hoda Ahmed Mohamed El-Sawy

For the Degree of PhD of science in

(Inorganic Chemistry)

To

Department of Chemistry

Faculty of Science

Ain Shams University

2017

A Thesis Title

Novel study of some drugs and their complexes with certain transition metals "synthesis, characterization and biological activity"

Researcher Name: Hoda Ahmed Mohamed Elsawy

<u>Supervisors</u>	Signature
Prof. Dr. Mostafa M. H. Khalil Prof. of inorganic chemistry, Faculty of science, Ain Shams University	••••••
Prof. Dr. Mostafa A. Radwan Prof. of chemical engineering, Faculty of engineering, BUE University	
Prof. Dr. Gehad G. Mohamed Prof. of inorganic chemistry, Faculty of science, Cairo University	
Dr. Walaa H. Mahmoud Lecturer of inorganic chemistry, Faculty of Science, Cairo University	•••••

Prof. Dr. Ebrahim Hosani Ali Badr

Head of Chemistry department

Referees

Approval Sheet

Title of Ph.D Thesis

Novel study of some drugs and their complexes with certain transition metals "synthesis, characterization and biological activity"

Researcher Name:

Hoda Ahmed Mohamed Elsawy (M.Sc. Chemistry 2015)

Submitted for Ph.D Degree of Science in Chemistry (Inorganic Chemistry)
To Chemistry Department, Faculty of Science, Ain Shams University.

Approved by:

Prof. Dr. Mostafa Mohamed Hassan Khalil

Prof. of inorganic chemistry, Faculty of science, Ain Shams University.

Prof. Dr. Gehad Genidy Mohamed

Prof. of inorganic chemistry, Faculty of science, Cairo University

Prof. Dr. Adel Zaki Hafiz El-Sonbaty

Prof. of inorganic chemistry, Faculty of science, Damietta University

Prof. Dr. Madiha Hassan Soliman Ali

Prof. of inorganic chemistry, Faculty of science, Helwan University

Prof. Dr. Ebrahim Hosani Ali Badr

Head of Chemistry department

Page of Title

Name: Hoda Ahmed Mohamed Elsawy

Degree: Doctor of Philosophy in inorganic chemistry

Department: Chemistry

Faculty: Science

University: Ain Shams

Registration: 8 / 7 / 2015

Grant Date: 2017

B.Sc. in chemistry- Faculty of Science-Cairo university-2007

M.Sc. in chemistry- Faculty of Science-Cairo university-2015

Dedication

To my first tutor ever, to my Mom, my inspiration and my continuous support

To my biggest support system ever, my Dad

To my husband and my beloved sons who are always

supports me

To my Sister who is always a guide and a support

To my colleagues who witnessed the journey, and
without whom I would not have been able to finish
the work.

ACKNOWLEDGEMENT

First and foremost, I would like to thank **Allah** for giving me the opportunity and well-power to accomplish this work

I would like to express my sincere gratitude and indebt to **Prof. Dr. Gehad Genidy Mohamed**, Prof. of Analytical and inorganic Chemistry, Chemistry Department, Faculty of Science, Cairo University. My ideal, for his encouragement, continuous support and comprehensive advice to me.

Also, I wish to express my sincere gratitude **Prof. Dr. Mostafa M. H. Khalil**, Prof. of inorganic Chemistry, Chemistry Department,
Faculty of Science, Ain Shams University. He always follows up the
progress of the work with keen interest; he was always dedicated to
pushing me further, and offering help and advice, thanks for believing in
me.

Furthermore, I wish to express my sincere gratitude **Prof. Dr. Mostafa A. Radwan**, Prof. of Chemical Engineering, Chemical Engineering Department, Faculty of Engineering, British university in Egypt, for his efforts during this research work.

Finally, I wish to express my sincere gratitude to **Dr. Walaa**Hamed Mahmoud, Lecturer of inorganic Chemistry, Chemistry

Department, Faculty of Science, Cairo University, who has been the inspiration for the whole thesis. She was always kind enough to follow up the progress of the work with keen interest, guidance and whose efforts made this humble work as possible. Thanks for bearing up with me.

Hoda Ahmed Elsawy

Abstract

<u>Candidate Name:</u> Hoda Ahmed Mohamed Elsawy

<u>Title of Thesis</u>: Novel study of some drugs and their complexes with certain transition metals "synthesis, characterization and biological activity"

<u>Degree: (Ph.D):</u> The Ph.D of Science in Inorganic Chemistry, Faculty of Science, Ain Shams University, 2017.

Two novel Schiff bases of (trans-4-[(2-(2-hydroxybenzimino)-3,5-dibromobenzyl)amino]cyclohexanol) (H_2L^1) and (trans-4-[(2-(2-quinolinoimino)-3,5-dibromobenzyl)amino]cyclohexanol) (HL^2) with their complexes with Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) La(III), Er(III) and Yb(III) were sensitizes and characterized by using many analytical techniques including elemental analyses, mass spectroscopy, IR, 1H NMR, magnetic moment, molar conductance and thermal analyses. The prepared complexes were found to have octahedral geometry. The biological activity (antimicrobial and anticancer activities) of the ligands and their complexes were also screened.

<u>Key Words</u>: Schiff base complexes, Elemental analysis, IR, ¹H NMR, Thermal analyses, mass spectroscopy, and Biological activity.

Table of Contents

1. Chap	ter I: Lit	terature survey	1
1.1	Metal	ions in our life	1
1.2	Metal	complexes in the biological system	2
1.3	Coordi	ination chemistry of the metal complexes	3
1.3	3.1 A	pplication of some of metal complexes	4
1.4	Literat	ure survey on Schiff bases	8
1.5	Synthe	esis of Schiff bases	9
1.6	Schiff	base metal complexes	9
1.7	Coordi	ination of the Schiff base to the transition metal ions	10
1.7	'.1 A ₁	pplications of Schiff base complexes	11
1.7	'.2 Ca	atalysis	11
1.7	'.3 D	yes	11
1.7	'.4 Pl	ant growth regulator	12
1.7	'.5 M	edical application	12
1.7	'.6 Bi	iological activity	12
-	1.7.6.1	Antibacterial activity	13
-	1.7.6.2	Antifungal activity	13
-	1.7.6.3	Antiviral activity	14
-	1.7.6.4	Antimalirial activity	14
-	1.7.6.5	Anticancer activity	15
1.7	'.7 A	pplications in modern Sciences	15

	1.7	.8	Application in synthesis and chemical analysis	16
	1.7	.9	Schiff bases as antioxidant	17
	1.7	.10	Using of Schiff bases in aldol reaction	19
	1.8	Am	ıbroxol Drug	20
2	Ch	apter	· II: Experimental Work	23
	2.1	Ma	terials and reagents	23
	2.2	Sol	utions	23
	2.2	.1	Solutions of Schiff base ligand (H ₂ L ¹ and HL ²) and their	metal
	cor	nple	xes	23
	2.2	.2	Solution for measuring conductivity	24
	2.2	.3	Solution of anticancer study	24
	2.3	Inst	trument	25
	2.4	Pro	cedures	26
	2.4	.1	Absorption spectra of the Schiff base ligands and their	metal
	cor	nple	xes	26
	2.5	Syn	nthesis of the Schiff base (H ₂ L ¹ and HL ²) ligands	26
	2.6	Syn	nthesis of metal complexes	28
	2.7	Det	termination of the metal content of the complexes	28
	2.8	Bio	logical activity	28
	2.8	.1	Antimicrobial activity	28
	2.9	Cyt	otoxic activity	30
	2.9	.1	Components under study	30
	2.9	.2	Human tumor cell lines	30

	2.9	0.3	Chemicals	30
	2.9).4 I	Buffers	32
	2.9	0.5	Cells and culture conditions	32
	2.9	0.6	Sulphorhodamine-B (SRB) assay of cytotoxic activity	34
3	CH	IAPTE	R III: RESULTS AND DISCUSSION	36
	3.1	Chara	acterization of the Schiff base H ₂ L ¹ ligand	36
	3.2	Chara	acterization of metal complexes of H ₂ L ¹ ligand	38
	3.2	2.1 I	Elemental analyses of complexes	38
	3.2	2.2 N	Molar conductivity measurements	38
	3.2	2.3	Spectral studies	39
	•	3.2.3.1	IR spectral studies	39
		3.2.3.2	¹ H NMR spectral studies	47
		3.2.3.3	Mass spectral studies	48
		3.2.3.4	Electronic spectral studies and magnetic s	susceptibility
	1	measur	rements	49
	3.2	2.4	Thermal analysis studies (TG and DTG)	54
	3.3	Struc	tural interpretation	63
	3.4	Biolo	gical activity	67
	3.5	Antic	cancer activity	69
	3.6	Conc	lusion	70
	3.7	Chara	acterization of the Schiff base ligand (HL ²)	77
	3.8	Chara	acterization of metal complexes	79
	3.8	R 1 F	Elemental analyses of complexes	79

	3.8.2 Mo	olar conductivity measurements	79
	3.8.3 Sp	ectral studies	80
	3.8.3.1	IR spectral studies	80
	3.8.3.2	¹ H NMR spectral studies	88
	3.8.3.3	Mass spectral studies	89
	3.8.3.4 measurer	•	and magnetic susceptibility
	3.8.4 Th	ermal analysis studies (TG and	DTG)95
	3.9 Structu	ral interpretation	106
	3.10 Biolo	ogical activity	107
	3.11 Antic	cancer activity	109
	3.12 Conc	lusion	109
4	Summary114		
5	References		116

List of Tables

Table 1: Different chemical reagents and their sources
Table 2: Analytical and physical data of Schiff base (H ₂ L ¹) ligand and its metal complexes
Table 3: IR spectra (4000-400 cm ⁻¹) of H ₂ L ¹ ligand and its metal complexes45
Table 4: ¹ H NMR spectral data of the H ₂ L ¹ ligand and its Zn(II) and Cd(II) complexes
Table 5: Electronic absorption spectral data of metal complexes54
Table 6: Thermoanalytical results (TG and DTG) of H ₂ L ¹ ligand and its metal complexes
Table 7: Biological activity of H ₂ L ¹ ligand and its metal complexes71
Table 8: Anticancer activity of H ₂ L ¹ ligand and its metal complexes72
Table 9: Analytical and physical data of HL ² ligand and its metal complexes84
Table 10: IR spectra (4000-400 cm-1) of HL ² ligand and its metal complexes. 86
Table 11: ¹ H NMR spectral data of HL ² ligand and its Zn(II) metal complex89
Table 12: Electronic absorption spectral data of metal complexes94
Table 13: Thermoanalytical results (TG and DTG) of HL ² ligand and its metal complexes
Table 14: Biological activity of HL ² ligand and its metal complexes110

List of Figures

Figure 1: Structure of heme center in the hemoglobin molecule
Figure 2: Iron sulfur protein cluster
Figure 3: Structure showing Co(II) metal ion in the coordination of cobalamine B ₁₂
Figure 4: General scheme for the formation of Schiff base9
Figure 5: Structre of Ambroxol drug
Figure 6: Scheme of preparation of the H ₂ L ¹ ligand27
Figure 7: Scheme of preparation of the HL ² ligand27
Figure 8: ¹ H NMR spectrum of H ₂ L ¹ ligand
Figure 9: Mass spectrum of the H ₂ L ¹ ligand37
Figure 10: Structure of the H ₂ L ¹ ligand
Figure 11: IR spectra of Schiff base ligand and its metal complexes [(a) H ₂ L ¹ , (b) Cr(III), (c) Mn(II), (d) Fe(III), (e) Co(II), (f) Ni(II), (g) Cu(II), (h) Zn(II), (i)
Cd(II), (j) La(III), (k) Er(III) and (l) Yb(III) complexes]42
Figure 12: 1H NMR spectra of (a) Zn(II) and (b) Cd(II) complexes48
Figure 13: Mass spectrum of Ni(II) complex
Figure 14: The UV-Vis absorption spectra of Schiff base ligand and its metal complexes [(a) H ₂ L ¹ , (b) Cr(III), (c) Mn(II), (d) Fe(III), (e) Co(II), (f) Ni(II), (g) Cu(II), (h) Zn(II), (i) Cd(II), (j) La(III), (k) Er(III) and (l) Yb(III) complexes]. 52