

Water Quality Management Upstream Cairo Drinking Water Plants along the Nile River

A Thesis Submitted in Partial Fulfillment for the Requirements of the Ph.D. Degree of Science in Civil Engineering (Irrigation and Hydraulics)

By

Mohamed Ahmed Reda Hamed

M.Sc. Civil Engineering -(Sanitary and Environmental Engineering)
Ain Shams University (2013)

Supervised by

Prof. Dr. Abdel Kawi Khalifa

Professor of Hydraulics Irrigation & Hydraulics Department Faculty of Engineering -Ain Shams University

Prof. Dr. Mohamed Nour El-Deen

Professor of Hydraulics Irrigation & Hydraulics Department Faculty of Engineering -Ain Shams University

Prof. Dr. Mohammed Hassan Abd El-Razik

Professor of Sanitary & Environmental Department Faculty of Engineering - Ain Shams University

Dr. Hussein El Gammal

Associate Professor, National Water Research Center Ministry of Water Resources and Irrigation

Dr. Peter Hany Sobhy Riad

Lecturer, Irrigation and Hydraulics Department Faculty of Engineering, Ain Shams University

Cairo, Egypt, 2016

Ain Shams University Faculty of Engineering

Water Quality Management Upstream Cairo Drinking Water Plants along the Nile River

Eng. Mohamed Ahmed Reda Hamed

A Thesis Submitted for the Partial Fulfillment of the Doctor of Philosophy

Examiners' Committee

Name and Affiliation

Signature

Prof. Dr. Mohamed Hassan Mohamed Mustafa

Executive Manager of Egyptian Water and Wastewater Regulatory Agency

Prof. Dr. Hamdy Ibrahim Aly Ahmed

Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University

Prof. Dr. Abdel Kawi Khalifa

Professor of Hydraulics, Irrigation and Hydraulics Department Faculty of Engineering, Ain Shams University

Prof. Dr. Mohamed Nour El-Deen

Professor of Hydraulics, Irrigation and Hydraulics Department Faculty of Engineering, Ain Shams University

Date:

Researcher Data

Name : Mohamed Ahmed Reda Hamed

Date of birth : 7/11/1971

Place of birth : Cairo

Last academic degree : M.Sc. in Civil Engineering

Field of specialization : Sanitary and Environmental

University issued the degree : Ain Shams University

Date of issued degree : 2013

Current job : General Manager for Chairman Office,

Greater Cairo Drinking Water Company

Statement

This thesis is submitted to the Irrigation and Hydraulics

Department, Faculty of Engineering, Ain Shams University in

Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Civil Engineering.

The work included in this thesis was carried out by the author

in the Irrigation and Hydraulics Department, Faculty of

Engineering, Ain Shams University from 2013 to 2016.

No part of this thesis has been submitted for a degree or a

qualification at any other university or institution.

Name: Mohamed Ahmed Reda Hamed

Signature:

Date:

4

Acknowledgment

First of all, I would express all my gratitude to ALLAH almighty for Blessing this work until it has reached its end, as a part of his generous Help throughout my life.

I would like to express my deepest gratitude to my dear Professor Dr.Mohamed Nour El-Deen, Professor of Hydraulics, Ain Shams University, for his continuous guidance, expertise advice and valuable suggestions that greatly enriched this work.

I am deeply grateful to the kindness of Professor Dr. Abdel Kawi Ahmed Mokhtar Khalifa, Professor of Hydraulics, Ain Shams University, for his continuous generous, sincere contributions to this work and valuable efforts throughout this study.

I am much obliged to Dr. Peter Sobhy Riad, Professor of Hydraulics, Ain Shams University, for his valuable suggestions that greatly enriched this work.

I am much obliged to Dr. Hussein El Gammal, Associate Professor, Secretary General of the National Water Research Center, Ministry of Water Resources and Irrigation, for his valuable suggestions that greatly enriched this work.

Last but not least, I would like to thank Danish Hydraulic Institute (DHI) for providing me their effective software MIKE11.

Mohamed A. Reda.

Table of Contents

	Page
Acknowledgement	i
Abstract	ii
Table of contents	iii
List of Figures	viii ·
List of Abbraviations	ix
List of Abbreviations	X
1-1General	1
1-2 Problem Statement	1
	-
1-3 Study Objectives	1
1-4 Methodology	2
1-5 Thesis Outline	2
Chapter (2): Literature Review	
2-1 Introduction	4
2-2 Challenges in the Water Sector	4
2-3 Water Resources Management	4
2-4 Water Quality Management	5
2-4-1 Water Quality Index (WQI)	5
2-5 Water Quality Monitoring	6
2-6 Water Quality Modeling	7
2-6-1 Mathematical Models Grouping	7
2-7 Water Quality Management Using Multi Criteria	
Analysis	8
2-8 Water Quality Management Information System	9
Chapter (3): Study Area	
3-1 The Study Area Characteristics	12
3-1-1 Hydrological Characteristics	12

3-1-2 Hydraulic Gauging Stations	13
3-2 Cairo Drinking Water Plants	13
3-3 Cairo Surface Water Quality	14
3-3-1 Hydraulic Gauging Stations	14
3-4 Laboratory Analysis	16
Chapter (4): Methodology	
4-1 Water Quality Index Determination	17
4-2 Study Area Data in GIS	18
4-3 Considerations behind Modeling Study Area	19
4-4 MIKE11 Model Water Quality Model	20
4-4-1 Selection of MIKE11 model in this study	20
4-4-2 The Conceptual Model	20
4-4-3 Model Processes	21 22
4-4-4-1 Reaeration Rate Coefficient	22
4-4-4-2 Deoxygenation Rate Coefficient	23
4-4-4-3 Fecal Coliform Decay Coefficient	23
4-5-4 MIKE11 Model Formation	24
4-5-4-1 The Simulation Editor	25
4-5-4-2 The Simulation Network Editor	26
4-5-4-3 The Cross-Section Editor	26
4-5-4-4 The Boundary Editor	27
4-5-4-5 The Hydrodynamic Parameter Editor	27
4-5-4-6 The Advection-Dispersion Editor	27 28
4-5-4-8 MIKE VIEW	28
4-5-5 Model Calibration	28
4-5-6 Model Run	28
4-5-7 Model Validation	28
4-5-8 Model Evaluation Statistics	28
4-5-8-1 Relative Mean Absolute Error	29
4-5-8-2 Percent Bias (PBIAS)	29
4-5-8-3 Nash-Sutcliffe Efficiency (NSE)	29

4-5-8-4 Coefficient of Determination	30
4-6 Applying MCA Technique	30
4-6-1 MCA Formation	31
4-7 Water Quality Management Information System	32
4-7-1 Database Structure Design.	32
4-7-2 Information System	33
4-7-3 Developing Graphical User Interface (GUI)	33
Chapter (5): Results and Discussion	
5-1 Water Quality Assessment	35
5-2 Study Area Water Quality Modeling	39
5-2-1 Model Calibration	39
5-2-2 Model Run	41
5-2-2-1 Modeling of Dissolved Oxygen	41
5-2-2-2 Modeling of Biochemical Oxygen Demand	43
5-2-2-3 Modeling of Chemical Oxygen Demand	45
5-2-2-4 Modeling of Fecal Coliform	47
5-2-3 Model Evaluation Statistics	49
5-2-4 Model Validation and Testing	50
5-3 Water Quality Management Scenarios	52
5-3-1 Scenario (1) Treatment of Four Polluted Drains Using	
Wetland Technique	53
5-3-2 Scenario (2) Treatment of drinking water plant sludge	54
disposal	34
percent over the maximum discharge in low demand period	55
5-3-4 Scenario (4) Increasing study reach flow, treatment of	
polluted drains using wetland technique and treatment of drinking	
water plant sludge disposal	56
5-3-5 Scenario (5) Treatment of Four Polluted Drains by constructing wastewater treatment plants	56
5-3-6 Scenario (6) Increasing study reach flow, treatment of	50
polluted drains by constructing wastewater treatment plants and	
treatment of drinking water plant sludge disposal	58
5-4 Scenarios Evaluation	59
5-5 Cairo Reach Water Quality Management Information	62
System	

5-5-1 Cairo Reach Module	62
5-5-2 Pollution Sources Module	63
5-5-3 Water Quality Data Module	63
5-5-4 Modeling Results Module	64
5-5-5 Reports Module	64
Chapter (6): Conclusion and Recommendations	
6-1 Conclusions	66
6-2 Recommendations	68
References	70

List of Figures

	_	Page
Figure (1-1)	Study methodology Schematic Diagram	2
Figure (2.1)	Nile Research Institute Water Quality	6
Figure (2-1)	Monitoring Network	O
Ei aura (2, 2)	Subdivisions of Water-Quality Models in	
Figure (2-2)	Common Use	7
Figure (3-1)	Study Area Layout	11
Figure (3-2)	Discharge River Nile at Cairo	12
Figure (4-1)	MIKE 11Different Complexity Levels	20
Figure (4-2)	The Simulation Editor Linkage	25
Figure (4-3)	Input Tab of Simulation Editor	26
Figure (4-4)	Cross-Section Editor of MIKE11 Model	27
Figure (4-5)	MCA Main Criteria and Indicators	31
Figure (4-6)	Management Model	44
Figure (5-1a)	Mean Annual Simulated Salinity, 2012	40
Figure (5-1b)	GIS Map for EC (µS/cm), 2012	40
Figure (5-1c)	Relation between Observed and Simulated	
	Mean Annual EC(μS/cm), 2012	41
Figure (5-2a)	Mean Annual Simulated DO Profile, 2013	42
Figure (5-2b)	GIS Map for DO, 2013	42
Figure (5-2c)	Relation between Observed and Simulated	
	DO, 2013	43
Figure (5-3a)	Mean Annual Simulated BOD Profile,2013	44
Figure (5-3b)	GIS Map for BOD, 2013	44
Figure (5-3c)	Simulated and Observed BOD Relation, 2013	45
Figure (5-4a)	Mean Annual Simulated COD Profile, 2013	46
Figure (5-4b)	GIS Map for COD, 2013	46
Figure (5-4c)	Mean Annual Simulated Salinity, 2012	47
Figure (5.5a)	GIS Map for Simulated and Observed	
Figure (5-5a)	Salinity,2012	47
Figure (5.5h)	GIS Map for Mean Annual Simulated Fecal	
Figure (5-5b)	Coliform, 2013	48
Figure (5-5c)	Simulated and Observed FC Relation, 2013	48
Figure (5-6)	GIS Map for Mean Annual DO, 2014	50
Figure (5-7)	GIS Map for Mean Annual COD, 2014	50
Figure (5-8)	GIS Map for Mean Annual FC,2104	51
Figure (5.0)	Summary of Water Quality Improvement	
Figure (5-9)	under Different Scenarios	51
Figure (5-10)	MCA Total Weight Scores	59
Figure (5-11)	WQMIS Main Interface	61

Figure (5-12)	Cairo Reach Module	62
Figure (5-13)	Pollution Sources Module	62
Figure (5-14)	Water Quality Module	63
Figure (5-15)	Modeling Results Module	63
Figure (5-16)	Reports Module	64

List of Tables

		Page
Table (2-1)	Some of Water Quality Indices Summary	5
Table (3-1)	Gauging stations along the study area	13
	Annual total average raw water, treated water and	
Table (3-2)	Sludge & washing water for Cairo drinking water	
	plants.	14
Table (3-3)	Pollution Source Locations	15
Table (3-4)	Measured Water Quality Parameters	16
Table (4-1)	Water Quality Index Classification	18
Table (4-2)	Study Area Graphical Data	19
Table (4-3)	Study Area Attribute Data	19
Table (4-4)	Summary of Model Constants	24
Table (5-1)	Spatial variation of surface water quality	
1 abie (3-1)	parameters and WQI	36
Table (5-2)	Model Evaluation Statistics	49
Table (5-3)	Model Validation Statistics	52
Table (5-4)	Management Scenarios Description	52
Table (5-5)	The Expected Performance of Wetland System	53
Table (5-6)	Water Quality Improvement under Scenario(1)	53
Table (5-7)	Water Quality Improvement under Scenario(2)	54
Table (5-8)	Water Quality Improvement under Scenario(3)	55
Table (5-9)	Water Quality Improvement under Scenario(4)	56
Table (5-10)	The Expected waste water treatment plants	
1 able (3-10)	typical removal rates	57
Table (5-11)	Water Quality Improvement under Scenario(5)	57
Table (5-12)	Water Quality Improvement under Scenario(6)	58
Table (5-13)	Water quality improvement under various	
1 aute (3-13)	scenarios	59
Table (5-14)	MCA for Management Scenarios Evaluation	60

List of Abbreviations

Abbreviations	Referent
AD	Advection-dispersion
BOD	Biological Oxygen Demand
CCME	Canadian Council of Ministers of the Environment
CDWP	Cairo Drinking Water Plant
CT	Disinfection Contact Time
COD	Chemical Oxygen Demand
DO	Dissolved Oxygen
DHI	Danish Hydraulic Institute
DRI	Drainage Research Institute
DSS	Decision Support System
DWP	Drinking Water Plant
EC	Electrical Conductivity
EEAA	Egyptian Environmental Affairs Agency
EPA	Environmental Protection Agency
FC	Fecal Coliform
GIS	Geographic Information System
GDWP	Giza Drinking Water Plant
HAD	High Aswan Dam
HD	Hydrodynamic
HSPF	Hydrological Simulation Program {FORTRAN}
NEQS	National Environmental Quality
MCA	Multi Criteria Analysis
MHUNC	Ministry of Housing, Utilities and New Communities
MWRI	Ministry of Irrigation and Water Resources
NBOD	Nitrogenous Biochemical Oxygen Demand
NWRC	National Water Research Center
SOD	Sediment Oxygen Demand
TC	Total Coliform
TDS	Total Dissolved Solids
TMDLs	Total Maximum Daily Loads
USEPA	US Environmental Protection Agency
VBA	Visual Basic for Application
WASP	Water Quality Analysis Simulation Program
WHO	World Health Organization
WQ	Water Quality
WQI	Water Quality Index
WQD	Water Quality Data
WQMIS	Water Quality Management Information System
WQP	Water Quality Parameters

List of Symbols

pH A measure of the activity of the hydrogen ion

CO3-2 Carbonates HCO3- Bicarbonates

CaCO3 Calcium Carbonate

NH3 Ammonia Ca2+ Calcium Mg2+ Magnesium Na+ Sodium

OC Degrees Centigrade

Cl- Chloride NO2- Nitrite NO3- Nitrate PO4-3 Phosphate

NH4-N Ammonium Nitrogen

SO4-2 Sulfate
Mn Manganese
Zn Zinc
Cu Copper

Al Aluminum
Cd Cadmium
Cr Chromium

Fe Iron
Hg Mercury
Ni Nickel

μS/cm Micro Siemens per centimeter

ABSTRACT

Cairo, sits on the River Nile south of the Mediterranean Sea, has an average reach length along the river about 50 km (from Km 900 to km 950 referenced to Aswan High Dam). This area is a particular importance in the study of surface water quality because of industrial, municipal and agricultural wastes were mixing with river flow and surrounding water body thereby deteriorating the water quality. However, Cairo Drinking Water Plants (CDWPs) that takes their raw water source from Nile river need a particular attention and continuous control for their water source quality to prevent health hazards.

This study mainly aims to develop Water Quality Management Information System (WQMIS) capable of proposing the required management scenarios to improve water quality upstream CDWPs and control the pollution sources. The work tasks can be divided into three phases. In the first phase water quality index (WQI) was calculated using Canadian Water Quality Index (CWQI) in order to evaluate the water quality upstream Cairo drinking water plants. In the second phase, the mathematical model (MIKE11) was formulated to simulate various water quality parameters. In the second phase, different scenarios were proposed to predict water quality improvement. An integrated evaluation framework is developed using analytical hierarchy process of Multi Criteria Analysis (MCA) that takes four indicators into account; technical, environmental, economical and socio-community evaluation and ranking various water quality management scenarios. MCA for different scenarios showed that the water quality management scenario focusing on treatment of CDWPs sludge instead of discharging it to Nile River is the most convenient scenario. In the third phase, WQMIS was constructed by using Microsoft Visual C programming applications to store required data for assessing and predicting the situation of the water quality status under current and future conditions.

Based on the results of this study, the developed WQMIS can be used as an effective tool to facilitate assessing, predicting water pollution and can provide easier decision making process for achieving designated water quality objectives.

Keywords

Surface Water, Drinking Water Plants, CWOI, MIKE11, MCA, WOMIS.