Subsartorial Approach in Open Reduction of Developmental Dysplasia of Hip

Thesis
Submitted for Partial Fulfillment of MD degree
in
Orthopedic Surgery

By

Mohamed Fouad El Sayed

(M.Sc. Orthopedic surgery)

Under supervision of

Prof. Dr. Sherif Mamdouh Abd Elhafez Amr

Professor of Orthopedic Surgery Faculty of Medicine - Cairo University

Dr. Mohamed Mahmoud Mohamed Hegazy

Assistant Professor of Orthopedic Surgery
Faculty of Medicine
Cairo University

Faculty of Medicine Cairo University 2015

Acknowledgement

First and foremost, praise and thanks are given to Allah who provided me in his unlimited generosity with the medical knowledge, and by his abundant aid this work has been done.

It is a great honor to express my sincere gratitude and deep appreciation to **Prof. Dr. Sherif Mamdouh Abd Elhafez Amr,**Professor of Orthopedic Surgery, Faculty of Medicine, Cairo University who gave me the honor of working under his remarkable supervision and fruitful guidance that makes me really fortunate and who was kind to offer me much of his valuable time.

I would also like to express my sincere gratitude and deep appreciation to **Prof. Dr. Mohamed Mahmoud Mohamed Hegazi**, assistant Professor of Orthopedic Surgery, Faculty of Medicine, Cairo University who gave me the honor of working under his supervision, for his careful and great support in this thesis and valuable and precious experience. Supervising the whole work, reading and criticizing the manuscript.

Finally I cannot fully express by any words my deep gratitude to my family, whom I owe a lot and dedicate this work, hoping it will help in improving the outcome of developmental dysplasia of hip patients.

Mohamed fouad el sayd

Abstract

Keywords-(DDH, ASIS, AOR, AIIS, CE angle, DVO).

In children older than 6 months, achieving a concentrically reduced hip while minimizing complications is more challenging. Bracing, traction, closed reduction, open reduction, and femoral or pelvic osteotomies are frequently used treatment modalities for children aged 6 months to 4 years. [17] Although most often considered for children older than 18 months, an open reduction is indicated for any hip in which a concentric, stable reduction cannot be achieved by closed means. A variety of approaches may be used; the location of the skin incision is of less importance than the elements of the procedure relevant to the acetabulum.. If this approach is used in bilateral cases, the procedures are usually staged at 2- to 6-week intervals. [17] Inability to perform a pelvic osteotomy or capsulorrhaphy via a medial approach generally limits its use to patients less than 12 to 18 months of age. However, a medial approach requires minimal dissection, avoids splitting the iliac apophysis, and allows direct access to the medial structures. There are several medially based approaches. The true medial approach, as originally described by Ludloff, utilizes the interval between the pectineus and the adductor longus and brevis. Ferguson [24] popularized the use of this approach in the United States and modified it to pass between the adductor longus and brevis anteriorly and the adductor magnus and gracilis posteriorly.

Contents

Ti+la	Page
Title	Page

•	Introd	duction		1
•	Revie	w of Litera	ture:	
	✓	Anatomy a	nd development of hip joint	4
	✓	Pathogene	sis of DDH	15
	✓	Manageme	ent of DDH	25
		>	Diagnosis of DDH	25
		>	Treatment	30
		>	Complications	49
•	Patie	nts and Me	thods	60
•	Resul	ts		80
•	Case I	Presentatio	on	92
•	Discu	ssion		101
•	Counc	lusion		109
•	Sumn	nary		111
•	Refer	ences		118
•	Arabi	c Summary		

List of Figures

Figure No.	Figure Title	Page
Fig 1	Lateral view (A) and medial view (B) of the normal acetabular cartilage complex of a one-day-old infant.	4
Fig 2	Coronal section through the center of the acetabulum in a full-term infant.	4
Fig 3	Development of the hip during infancy and childhood occurs by proliferation of growth cartilage (unshaded) of the acetabulum and the proximal femur.	6
Fig 4	Cross-section of proximal part of the left femur at the base of the neck, showing the extracapsular arterial ring	11
Fig 5	Anterior half of proximal part of the right femur perfused with barium sulfate and then divided in the coronal plane, from a 40-month-old white boy.	12
Fig 6	Anterior view of the right femoral neck, perfused with barium sulfate, from a 9-month-old girl.	12
Fig 7	Right acetabular cavity and femoral head of a newborn baby with bilateral congenital hip dysplasia	16
Fig 8	The normal hip in child development is shown with the femoral head closely associated with the acetabulum to yield a congruent joint	18
Fig 9	A coronal section of the acetabulum demonstrates the interned hypertrophic labrum (limbus) extending over the margin	20

List of figures

	of a slightly thickened acetabular cartilage		
Fig 10	A- Positive Galeazzi sign with apparent shortening of right lower extremity. B- Decrease in abduction of right hip with adduction contracture	25	
Fig 11	Radiographic parameters. (DDH, developmental dysplasia of the hip; acetabular index, center-edge angle.)	27	
Fig 12	Most acetabular remodeling occurs in the first 3 years after reduction	31	
Fig 13	Algorithm for treatment of DDH in children aged 6 to 18 months	32	
Fig 14	A-f diagrams illustrating anterior smith Petersen approach.	37	
Fig 15	A-f diagrams illustrating medial Ludloff approach to the hip.	40	
Fig 16	Salter single innominate osteotomy	45	
Fig 17	Dega osteotomy for DDH.	46	
Fig 18	Classification of proximal femoral growth disturbances according to Kalamchi and MacEwen	54	
Fig 19	skin incision1 cm distal and medial to anterior superior iliac spine (ASIS) and extending to about 7 cm parallel to pelvic prim	68	
Fig 20	identification of rectus femoris	69	
Fig 21	identification of iliopsoas tendon	70	
Fig 22	T shape incision in hip capsule.	71	
Fig 23	closure of capsule	72	
Fig 24	closure of skin	73	
Fig 25	percentage of AVN at final result	80	
Fig 26	Percentage of Lateral subluxation at final	81	

List of figures

	results.	
Fig 27	relation between lateral subluxation and age at reduction	82
Fig 28	clinical results according to Mckay criteria	83
Fig 29	Relation between modified Mckay criteria and age at reduction	84
Fig 30	percentage of radiological results according to Severin classification	84
Fig 31	Relation between severin score and age at operation at final results.	85
Fig 32	Relation between AVN and presence of capital femoral epiphysis at final results.	86
Fig 33	Relation between mean Acetabular index (pre and 1year post) and age at open reduction.	87
Fig 34	Relation between Acetabular index (preoperative) and age at reduction.	88
Fig 35	Relation between Acetabular index (1year post -op) and age	88
Figs 36-43	Radiological and clinical progression of case number(4)	109-110
Figs 44-49	Radiological and clinical progression of case number(6)	111-112
Figs 50-55	Radiological and clinical progression of case number(14)	113-114
Figs 56-62	Radiological and clinical progression of case number(16)	115-116
Figs 63-68	Radiological and clinical progression of case number(13)	117-118

List of Tables

Table No.	Table Title	Page
Table 1	High risk factors for developmental dysplasia of hip	23
Table 2	The Commission for the Study of Hip Dysplasia (Tönnis) classification.	27
Table 3	Radiographic Features in Normal and Dysplastic Hips	29
Table 4	Criteria for total AVN	51
Table 5	Bucholz and Ogden classification	53
Table6	Kalamchi and MacEwen classification	54
Table 7	Distribution of Gender in patient group	61
Table 8	distribution of age in patient group	61
Table 9	Distribution of affected Side in patient group	62
Table 10	Distribution of presence or absence of femoral capital epiphysis.	62
Table 11	Distribution of dislocation according to tönnis classification	63
Table 12	Modified McKay criteria	75
Table 13	Severin's Radiological Grading.	76
Table 14	master table for preoperative assessment	77
Table 15	relation between lateral subluxation and age at	81

	reduction	
Table 16	Relation between modified Mckay criteria and age at reduction.	83
Table 17	Relation between severin score and age at operation	85
Table 18	Relation between AVN and presence of capital femoral epiphysis.	86
Table 19	Relation between Acetabular index (pre and 1year post) and age at open reduction.	87
Table 20	master table for results	91
Table 21	Comparison between our results and other results.	99

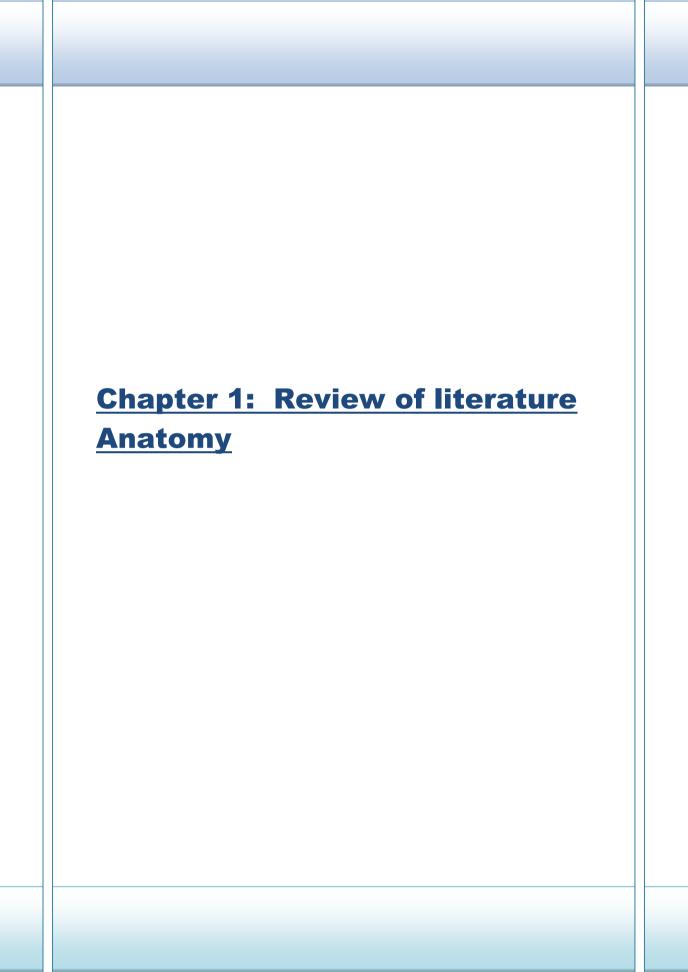
List of Abbreviations

Al	Acetabular index
CE	Centre edge angle
angle	
AOR	Anterior open reduction
ASIS	Anterior Superior Iliac Spine
AVN	Avascular necrosis
DDH	Developmental dysplasia of the hip
DVO	Derotation varus osteotomy
FNI	Femoral neck isthmus
FO	Femoral osteotomy
FS	Femoral shortening
Hb	Hemoglobin
Ю	Innominate osteotomy
LGP	Longitudinal growth plate
MOR	Medial open reduction
РО	Pelvic osteotomy
TGP	Trochanteric growth plate
TRC	Triradiate cartilage

Introduction

Introduction

Developmental dysplasia of the hip (DDH) is common, ranging from mild dysplasia to frank dislocation. The diagnosis can be difficult, even in experienced hands, particularly when there are bilateral dislocations. All infants should be screened clinically. Initial treatment in the infant is with a Pavlik harness, if this is ineffective or if the child presents later, more aggressive treatment, such as a closed reduction, or even surgical reduction may be indicated. All hips must be carefully followed until maturity. If diagnosed and treated promptly excellent results can be obtained, but long-term sequel occurs even in patients given optimal treatment. [1]


Although most often considered for children older than 18 months, an open reduction is indicated for any hip in which a concentric, stable reduction cannot be achieved by closed means. ^[2]

The goals of open treatment are to obtain reduction, maintain the reduction, avoid damage to the femoral head, and provide an optimal environment for acetabular and proximal femoral development. [3]

The modified Smith-Petersen anteroir approach, performed via a "bikini" incision, is the most utilitarian approach and is used when there is the possibility of a concomitant pelvic osteotomy. This approach is particularly well suited to open reduction in patients in whom there may be a high-riding femur with a lax capsule adherent to a false acetabulum and structures that are not as well visualized through a medial approach. Inability to perform a pelvic osteotomy or capsulorrhaphy via a medial approach generally limits its use to patients less than 12 to 18 months of age. However, a medial approach requires minimal dissection, avoids splitting the iliac apophysis, and allows direct access to the medial structures. [2]

AIM OF THE WORK

The aim of our study is to discuss the results of open reduction in cases of developmental dysplasia of hip using a new approach called subsartorial approach. We will evaluate the radiographic and clinical outcome of the patient cohort. We will compare our results to the published series in the literatures.

