

AIN SHAMS UNIVERSITY

Faculty of Computer
& Information Sciences

Information Systems Department

Generic Model for Test Case

Generation from both UML

Diagrams and Requirements

A thesis submitted to Information Systems Department, Faculty

of Computer and Information Sciences, Ain Shams University,

Cairo, Egypt as a partial fulfillment of the requirements for The

Degree of Master of Science in Computer and Information

Sciences.

BY

Roaa Ahmed Mostafa El-Ghondakly
B.Sc. of Computer & Information Sciences, Information Systems

Department, Faculty of Computer and Information Sciences, Ain
Shams University

Under the Supervision of

Prof. Dr. Nagwa Lotfy Badr
Professor of Information Systems,
Vice Dean of Education and Students Affairs,

Faculty of Computer and Information Sciences,

Ain Shams University

Dr. Sherin Mohamed Mahmoud Moussa
Associate Professor,

Information Systems Department,

Faculty of Computer and Information Sciences,

Ain Shams University

October 2016

i

ABSTRACT

Software testing is accounted to be an important phase in software

development life cycle in terms of cost and manpower. It is considered

the key to success of any software. Consequently, many studies have

been conducted to minimize the associated cost and human effort to fix

bugs and errors, and to improve the quality of the testing process by

generating test cases at early stages. There exist many software

development models, as waterfall model, agile model, etc. Test cases can

be generated at different phases (analysis phase, design phase and after

development phase). Though, test cases generation at early stages is more

effective rather than that after development, where time and effort used

for finding and fixing errors and bugs are less than that after

development. At a later stage, fixing errors results in enormous code

correction, consuming a lot of time and effort.

Requirements-based testing is a testing approach in which test cases are

derived from the requirements. Requirements represent the initial phase

in software developments life cycle. Requirements are considered the

basis of any software project. Therefore, any ambiguity in natural

language requirements leads to major errors in the coming phases.

Moreover, poorly defined requirements may cause software project

failure. Model-based testing (MBT) is the automatic generation of

software test procedures, using models (UML diagrams) of system

requirements and behavior. Whilst Search Based Software Testing

(SBST) is a branch of Search Based Software Engineering (SBSE), in

which optimization algorithms are used to automate the search for test

data that maximizes the achievement of test goals, while minimizing

ii

testing costs. However, most of related studies considered only one type

of behavioral diagrams with a lot of human intervention.

In this thesis, we study the different paradigms of testing techniques for

generating test cases, where we investigate their coverage and associated

capabilities. We then propose a consolidated model for a generic

automated test cases generation. The model consists of two main parts to

handle the UML diagrams, the software requirements specification (SRS)

documents generated from the waterfall development model and the user

stories generated from the agile development model, which are

considered as the main deliverables of the analysis and design phases in

the software development life cycle.

In the first part (UML Test Cases Generation Part), an optimized

automated approach for generic and dynamic test cases generation is

proposed. It is generic and dynamic as it can be applied on different types

of behavioral diagrams (i.e. activity diagram, state diagram, uses case

diagram, etc) for multi-disciplinary domains. While automation is

considered to generate test cases with minimum human intervention,

which will consequently help to minimize total cost. An optimization

technique is applied to optimize the generated test cases to ensure the

quality of results. The proposed approach merges model-based testing

with search-based testing to automatically generate test cases from

different behavioral diagrams, i.e. use case, activity, etc. Whereas in the

second part (Requirements Test Cases Generation), we propose another

novel automated approach to generate test cases from requirements.

Requirements can be gathered from different models either waterfall

model (functional and non-functional) or agile model. SRS documents,

non-functional requirements and user stories are parsed to generate test

iii

cases. The proposed consolidated model uses text mining and symbolic

execution methodology for test data generation and validation, where a

knowledge base is developed for multi-disciplinary domains. The

proposed model is a time saving model where it will take about 70

minutes (4200000 milliseconds) to perform all the proposed steps

manually for UML Test Case Generation Phase. While it takes about

0.204 minutes (12269 milliseconds) when using our automated system to

perform the same steps which ensure time and cost saving.

iv

Acknowledgment

 Thanks God for your grace and mercy on my whole life. I am

grateful to have Professor Dr. Nagwa Badr and Dr. Sherin Moussa as

my supervisors. I would like to thank them for their cooperation,

support and encouragement during my study and research, in addition

to their final revision of the thesis.

Special thanks to my husband, daughter Laila and my whole family

who have always supported me and helped me in this achievement.

v

TABLE OF CONTENTS

Table of Contents

LIST OF FIGURES .. vi
LIST OF TABLES ... viii
CHAPTER 1 ... 1
INTRODUCTION .. 1
1.1 Problem Definition .. 6
1.2 Objective ... 7
1.3 Thesis Structure ... 8
CHAPTER 2 ... 9
RELATED WORK .. 10
2.1 Code-based Testing .. 11
2.2 Model-based Testing .. 11
2.3 Search-based Testing .. 14
2.4 Requirement-based Testing .. 16
CHAPTER 3 ... 23
THE PROPOSED MODEL ... 24
3.1. UML Test Case Generation .. 25
3.2. Requirement Test Case Generation .. 41
CHAPTER 4 ... 57
EXPERIMENTS AND RESULTS .. 58
CHAPTER 5 ... 76
CONCLUSION AND FUTURE WORK .. 77
REFERENCES .. 81
PUBLICATIONS ... 92
Appendix A ... 94
List of Abbreviations ... 120

الرســالة ملخـص .. 121

vi

LIST OF FIGURES

Figure 2.1. Survey Architecture ... 10
Figure 3.1. The Proposed System Architecture (UML test case

generation) ... 27
Figure 3.2.State Diagram Example .. 28
Figure 3.3.Equivalent parsing for the state diagram Example 29
Figure 3.4.Equivalent weighted Graph for State Diagram Example 30
Figure 3.5. The generated paths after applying DFS 31
Figure 3.6. The set of reduced paths. ... 31
Figure 3.7. The optimum test case symbolic execution data 35
Figure 3.8. Grammatical tree for the given example. 36
Figure 3.9. Part-of-Speech tagging and parsing Approach 37
Figure 3.10. A Knowledgebase sample. .. 38
Figure 3.11. Database Schema ... 39
Figure 3.12. Optimum Test case validation ... 40
Figure 3.13. The Proposed Approach Flowchart (UML Test Case

Generation) .. 40
Figure 3.14. The Proposed System Architecture (Requirement test case

generation) ... 41
Figure 3.15. User stories before clustering .. 44
Figure 3.16. User stories after clustering ... 45
Figure 3.17. The Generated test cases from user stories 46
Figure 3.18. The Generated list of verbs with their corresponding

symbolic values from User Stories ... 47
Figure 3.19. The Validated Test Cases from User Stories 48
Figure 3.20. SRS document sample. .. 50
Figure 3.21. Set of generated test cases from SRS document 50
Figure 3.22. Set of Generated Test cases after removing redundant nodes

for SRS document example ... 50
Figure 3.23. The list of verbs and their corresponding symbolic values for

SRS document ... 51
Figure 3.24. The Validated test cases fo SRS document 52
Figure 3.25. Sample for functional and non-functional requirements 53
Figure 3.26. The list of verbs and their Corresponding symbolic values

for functional and non-functional requirements example 54
Figure 3.27. The Validated test cases for Functional and non-functional

requirements .. 55
Figure 3.28. The Proposed Approach pseudo code (Requirements test

case generation) ... 56

vii

Figure 4.1.Activity Diagram Example of ATM 59
Figure 4.2.Use Case Diagram Example ... 60
Figure 4.3.GUI of the proposed system in state diagram 61
Figure 4.4. GUI of the proposed system in Case of an Activity Diagram

 ... 62
Figure 4.5. GUI of the proposed system in Case of Use-Case Diagram . 63
Figure 4.6. Cyclomatic Complexity Comparison 65
Figure 4.7.Time Comparison ... 66
Figure 4.8.Time Comparison with other approaches 67
Figure 4.9. GUI of the proposed system in Case of SRS Documents 69
Figure 4.10.GUI of the proposed system in Case of Functional and Non-

Functional Requirements .. 70
Figure 4.11. GUI of the proposed system in Case of User Story 71
Figure 4.12.Time Comparison for different Requirements 72
Figure 4.13. Effort Chart .. 73

viii

LIST OF TABLES

Table

Page

2.1 Comparison between Proposed Approach (UML Test Case

Generation Part and Requirement Test Case Generation Part) and

different model-based and Requirement-Based testing studies ………

 19

4.1 The time consumed by each step in UML test case Generation

phase manually………………………………………………………...

68

4.2 The time consumed by each step in Requirement test case

Generation phase manually……………………………………………

 74

4.3 The number of test cases before and after optimization and

validation ……...

75

CHAPTER 1

 INTRODUCTION

2

CHAPTER 1

INTRODUCTION

Software testing is considered one of the important phases in software

development life cycle. Testing process is considered the key to success of any

software. The development life cycle total cost is considered to be high. For this

reason, many studies have been conducted to minimize the associated cost and

human effort to fix bugs and errors, and to improve the quality of testing process

by automatically generating test cases [1]. Test automation is the process of

using separate software to manage and evaluate the fulfillment of test cases and

to compare the expected outcomes with the generated ones [2]. Moreover, the

automation process is used to generate test cases with minimum human

intervention, which will consequently help to minimize total cost. Different

studies are carried out for test case generation techniques [3].

There were many approaches in testing, as code-based testing, requirement-

based testing, model-based testing and search-based testing approach. Code-

based testing corresponds to the testing that is carried out on code development,

code inspection, unit testing in software development process. Requirements-

based testing, on the other hand, is a testing approach in which test cases are

3

derived from requirements. These tests aim to test all the requirements.

However, it is difficult to achieve complete testing as some requirements can be

tested by a single test case, while others need to be verified by a set of test cases.

Moreover, even when a full set of requirements-based test cases are applied to a

system, this does not ensure that the entire system has been tested [13]. Testing

requirements helps in increasing the quality of results specially when carried out

at an early stage. In waterfall models, testing can be conducted as soon as

executable software (even if partially complete) exists. Most testing occurs after

system requirements have been defined and then implemented in testable

programs. In contrast, under an agile approach, requirements, programming, and

testing are often done concurrently. According to the continuous changing and

increasing of requirements, customer involvement is mandatory. Agile

development is aligned with the view to face the challenges of an increasingly

volatile marketplace, changing requirements, customer involvement, priorities

and shorter deadlines [14]. Whereas functional requirements are mostly written

using use cases with textual description, which is too complicated to perform

further processes on them as generating a test case process.

Model-based testing (MBT) is the automatic generation of software test

procedures, using models (UML diagrams) of system requirements and behavior.

The Unified Modeling Language (UML) diagrams are divided into two main

parts; structural diagrams (i.e. class diagram) and behavioral diagrams (i.e.

activity, use-case and state diagrams). Structural diagrams are used to show the

structure, style or design of the software, while behavioral ones are used to

clarify the steps in which the software will pass through until it reaches the

desired output. In other words, it shows the flow of events. Whilst Search Based

Software Testing (SBST) is a branch of Search Based Software Engineering

(SBSE), in which optimization algorithms are used to automate the search for

test data that maximizes the achievement of test goals, while minimizing testing

https://en.wikipedia.org/wiki/Agile_software_development

4

costs [9, 10, 11, 12]. The optimization of the generated output can have different

techniques, as reducing the number of test cases, test cases prioritization, as well

as minimizing time, increasing performance, maximizing the quality of

outcomes, etc.

Testing may be performed in the last phase of the software development life

cycle or at an early stage. If the process is carried out at early phase of the

development life cycle; it saves more time and effort to detect errors. At later

stages, enormous errors would be generated as soon as the code is completed,

where it demands a lot of code correction and modification. Therefore, testing

process should be carried out at the beginning of software development life cycle

(requirements and design phases) to save time and cost. For this reason, model-

based testing [4, 5, 6] and requirement-based testing [13] were preferable rather

than code-based testing [7, 8] to generate test cases from UML diagrams

(behavioral diagrams) during the design phase.

Considering the previously mentioned testing techniques, it was found that the

code-based methodology does not detect faults early as in the model-based and

requirement-based approaches because it depends on the source code of the

program to be tested while the other two approaches depend on the diagrams and

requirements specifications that was constructed and found in an early stage

before implementation.

The quality of the generated test cases is the main factor that determines the

quality and efficiency of the testing phase. Whereas the test cases should be

validated against recognized quality standards, which would determine the

degree of their functional coverage that identifies their level of applicability as

well as their acceptable form [15, 16, 17, 18, 19].

5

Many metrics are being used to measure the quality of the test cases being

generated, as the cost, time, complexity of generation, effort, coverage criteria,

etc. [20, 21]). The coverage criteria are considered as a set of metrics that is used

to check the quality of the test cases extracted from the behavioral models. This

metric checks how well the test cases cover the executable test paths that they

are mapped to [22]. They contain many types, such as the branch coverage

criterion, full predicate and full condition coverage criteria and all basic paths

coverage criterion. Cyclomatic complexity is software metric that provides a

quantitative measure of the logical complexity of programs developed by

Thomas J. McCabe in 1976 [23, 24, 25]. It can be used in the context of the basis

path testing methods. Whereas the basis path testing is a structured testing or

white box testing technique that is used to design test cases intended to examine

all possible paths of execution at least once. The value computed for the

cyclomatic complexity defines an upper bound for the number of linearly

independent paths in the basis set of a program [26]. The cyclomatic complexity

can be computed using different ways; the number of regions in the graph

corresponds to the cyclomatic complexity.

 (1)

where E is the number of edges and N is the number of nodes in the graph G.

 (2)

where P is the number of predicates i.e. binary decision nodes (with two

outgoing edges).

The V(G) can also be used to get all the test paths required to test the execution

and the exit of the loops. Therefore, test paths number computed by the

cyclomatic complexity covers: Branch coverage (two outgoing edges from

decisions), Condition coverage (multiple outgoing edges) and the All-basis paths

6

coverage that covers loops at least once. The cyclomatic complexity function

V(G) has two main properties that make up a powerful testing criterion. The first

property is its ability to determine the number of test paths that are necessary to

achieve the full branch coverage. The second property is determining the number

of test paths needed to achieve a full path coverage, which only requires

covering all the linearly independent paths and not all the paths whose

calculation is impractical.

Test data generation, on the other hand, is the process of generating data (output)

according to simulated inputs [29, 30, 31, 32, 33, 34]. Symbolic Evaluation (also

referred to as Symbolic Execution) technique is used for test data generation. It

is used to simulate symbolic values of variables, instead of actual values, to act

as an input to the system under test to find the expected output according to those

inputs [27, 28]. Test data generation techniques are used to validate the

generated data, since the validation process increases the quality of the generated

test cases.

1.1 Problem Definition

The quality of any software should be ensured in every phase of the

software development life cycle, starting from the requirements elicitation to the

deployment of the final product. Consequently, the software testing process is

one of the main activities carried out in the software development life cycle. It is

often accounted for more than 50% of the total development costs. Thus, it is

imperative to reduce the cost and the human effort in finding bugs and errors and

to improve the effectiveness of software testing by automating the testing

process. Test automation can automate some repetitive but necessary tasks in a

formalized testing process already in place, or add additional testing that would

be difficult to perform manually.

