AIN SHAMS UNIVERSITY
Faculty of Computer
& Information Sciences
Information Systems Department

Generic Model for Test Case
Generation from both UML
Diagrams and Requirements

A thesis submitted to Information Systems Department, Faculty
of Computer and Information Sciences, Ain Shams University,
Cairo, Egypt as a partial fulfillment of the requirements for The
Degree of Master of Science in Computer and Information
Sciences.

BY
Roaa Ahmed Mostafa El1-Ghondakly

B.Sc. of Computer & Information Sciences, Information Systems
Department, Faculty of Computer and Information Sciences, Ain
Shams University

Under the Supervision of

Prof. Dr. Nagwa Lotfy Badr
Professor of Information Systems,
Vice Dean of Education and Students Affairs,
Faculty of Computer and Information Sciences,
Ain Shams University

Dr. Sherin Mohamed Mahmoud Moussa
Associate Professor,
Information Systems Department,
Faculty of Computer and Information Sciences,
Ain Shams University

ABSTRACT

Software testing is accounted to be an important phase in software
development life cycle in terms of cost and manpower. It is considered
the key to success of any software. Consequently, many studies have
been conducted to minimize the associated cost and human effort to fix
bugs and errors, and to improve the quality of the testing process by
generating test cases at early stages. There exist many software
development models, as waterfall model, agile model, etc. Test cases can
be generated at different phases (analysis phase, design phase and after
development phase). Though, test cases generation at early stages is more
effective rather than that after development, where time and effort used
for finding and fixing errors and bugs are less than that after
development. At a later stage, fixing errors results in enormous code

correction, consuming a lot of time and effort.

Requirements-based testing is a testing approach in which test cases are
derived from the requirements. Requirements represent the initial phase
in software developments life cycle. Requirements are considered the
basis of any software project. Therefore, any ambiguity in natural
language requirements leads to major errors in the coming phases.
Moreover, poorly defined requirements may cause software project
failure. Model-based testing (MBT) is the automatic generation of
software test procedures, using models (UML diagrams) of system
requirements and behavior. Whilst Search Based Software Testing
(SBST) is a branch of Search Based Software Engineering (SBSE), in
which optimization algorithms are used to automate the search for test

data that maximizes the achievement of test goals, while minimizing

testing costs. However, most of related studies considered only one type

of behavioral diagrams with a lot of human intervention.

In this thesis, we study the different paradigms of testing techniques for
generating test cases, where we investigate their coverage and associated
capabilities. We then propose a consolidated model for a generic
automated test cases generation. The model consists of two main parts to
handle the UML diagrams, the software requirements specification (SRS)
documents generated from the waterfall development model and the user
stories generated from the agile development model, which are
considered as the main deliverables of the analysis and design phases in

the software development life cycle.

In the first part (UML Test Cases Generation Part), an optimized
automated approach for generic and dynamic test cases generation is
proposed. It is generic and dynamic as it can be applied on different types
of behavioral diagrams (i.e. activity diagram, state diagram, uses case
diagram, etc) for multi-disciplinary domains. While automation is
considered to generate test cases with minimum human intervention,
which will consequently help to minimize total cost. An optimization
technique is applied to optimize the generated test cases to ensure the
quality of results. The proposed approach merges model-based testing
with search-based testing to automatically generate test cases from
different behavioral diagrams, i.e. use case, activity, etc. Whereas in the
second part (Requirements Test Cases Generation), we propose another
novel automated approach to generate test cases from requirements.
Requirements can be gathered from different models either waterfall
model (functional and non-functional) or agile model. SRS documents,

non-functional requirements and user stories are parsed to generate test

i

cases. The proposed consolidated model uses text mining and symbolic
execution methodology for test data generation and validation, where a
knowledge base is developed for multi-disciplinary domains. The
proposed model is a time saving model where it will take about 70
minutes (4200000 milliseconds) to perform all the proposed steps
manually for UML Test Case Generation Phase. While it takes about
0.204 minutes (12269 milliseconds) when using our automated system to

perform the same steps which ensure time and cost saving.

111

Acknowledgment

Thanks God for your grace and mercy on my whole life. I am
grateful to have Professor Dr. Nagwa Badr and Dr. Sherin Moussa as
my supervisors. I would [ike to thank, them for their cooperation,
support and encouragement during my study and research, in addition

to their final revision of the thess.

Special thanks to my husband, daughter Laila and my whole family

who have always supported me and helped me in this achievement.

v

TABLE OF CONTENTS

Table of Contents

LIST OF FIGURES ..ottt vi
LIST OF TABLES ...ttt sttt viii
CHAPTER L ittt ettt e e e ettt tee e s e e e et ttatee e e e e eeeetbaa e e s eeeaaesananasseseenanes 1
INTRODUCGCTION........ootiteieieieeetteeeese ettt ese e 1
1.1 Problem Definitionccceeiuieiiiiiienieeieeie et 6
1.2 ODJECLIVE .evvevrieiieiieieieiieeteeteerieesteesteessaessseasseesseesseesssesssesssessseessesssessssesssenns 7
1.3 ThESIS StIUCTUTEeeutetieiieiieiieie ettt ettt ettt e see s 8
CHAPTER 2 tiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee et e e e e e eeeeee e e e e eeeeeeeeeeeeeeaeeeeeeeeeeeeeeeeeseeeaeeeeeseaneeeees 9
RELATED WORK ..ottt 10
2.1 Code-based TEStINGc.cecvrerueeriieriieriieriie ettt ettt 11
2.2 Model-based TeStINGceecueerierienierieeie ettt 11
2.3 Search-based TeStiNg........ccccvvevrierierierieeieeie e eseesre e reere e e e es 14
2.4 Requirement-based TeStiNGcccceevverierieeriierieeneesreere e ere e eseeens 16
(O3 AN = 1) 2 N 23
THE PROPOSED MODEL.......ccooiiiiiiiieeseeese ettt 24
3.1. UML Test Case GEeNeration............ceceeeereerueeeesiereeeenieneeeneeseeeneeneeseeenes 25
3.2. Requirement Test Case GENnerationccoceeceeverervierereenieneneenueneenns 41
CHAPTER 4 oottt et ettt e et e e e et e s eeb s e eeataseaaannesaeannneeennns 57
EXPERIMENTS AND RESULTS.....oooiiieiteetee ettt 58
CHAPTER 5 iiiiiiiitiiiiiiiee s eeettttiieee s et eetttatieeseeeeetaaauasseseeetaesasassseseseessnnnnsssseesenes 76
CONCLUSION AND FUTURE WORKooiiiiieeieieeeee e 77
REFERENCES ...ttt 81
PUBLICATIONS ..ottt 92
APPENAIX A oot 94
List Of ADDIEVIATIONSeveeiiiieiieiieiieie ettt 120
Al Gl ittt 121

LIST OF FIGURES

Figure 2.1. Survey ArchiteCture.........cccveevveeeiiieeiiieeiieeeee e 10
Figure 3.1. The Proposed System Architecture (UML test case
0S4 1S 211021) USSR 27
Figure 3.2.State Diagram Example..........ccccooeieriiiiiiiniiniiiieeeeee e, 28
Figure 3.3.Equivalent parsing for the state diagram Example................. 29
Figure 3.4.Equivalent weighted Graph for State Diagram Example....... 30
Figure 3.5. The generated paths after applying DFSccoeeeirennen. 31
Figure 3.6. The set of reduced paths.cccoeeveriieiiiniiiiiieieceee e, 31
Figure 3.7. The optimum test case symbolic execution data................... 35
Figure 3.8. Grammatical tree for the given example.cccoeeevvennnrnnnen. 36
Figure 3.9. Part-of-Speech tagging and parsing Approach...................... 37
Figure 3.10. A Knowledgebase sample.ccceevieviieniinciienieeiienieee. 38
Figure 3.11. Database Schema...........cccceevviriininiiniiniicnccccecee 39
Figure 3.12. Optimum Test case validation...........ccccceeevercvieneeenneenneenen. 40
Figure 3.13. The Proposed Approach Flowchart (UML Test Case
GENETALION)veiieiieiieeieeriie et ertreetee st e eaeestaeebeesaaeesseessaesnsaessneesseensns 40
Figure 3.14. The Proposed System Architecture (Requirement test case
ENETATION)..evviieirieiieeeieeieeeteesteeeteesteeesseenseeesseesssessseesssesnsaessseasseensns 41
Figure 3.15. User stories before Clustering........cccceecveveeveerveneeneneenene 44
Figure 3.16. User stories after clustering...........cccceeevveevcieencieeniieennnnn. 45
Figure 3.17. The Generated test cases from user Storiesc..cceceeueeee. 46
Figure 3.18. The Generated list of verbs with their corresponding
symbolic values from User StOT1€scccceveerervieriinenrienieneeienene 47
Figure 3.19. The Validated Test Cases from User Stories....................... 48
Figure 3.20. SRS document sample.ccoceeverieniininnicniineeieneeene 50
Figure 3.21. Set of generated test cases from SRS document 50
Figure 3.22. Set of Generated Test cases after removing redundant nodes
for SRS document example.........ccceeevvieerieeniieeeieece e 50
Figure 3.23. The list of verbs and their corresponding symbolic values for
SRS dOCUMENL....c..eiiiiiiiiiiieiiceeee e 51
Figure 3.24. The Validated test cases fo SRS document........................ 52
Figure 3.25. Sample for functional and non-functional requirements.....53
Figure 3.26. The list of verbs and their Corresponding symbolic values
for functional and non-functional requirements example.................. 54
Figure 3.27. The Validated test cases for Functional and non-functional
TEQUITEINIENESuvveeeieieeeieeeeireeeieeeetreeeteeesseeesseeessseeeesseeessseesnsseesnnses 55
Figure 3.28. The Proposed Approach pseudo code (Requirements test
CASE ZENETATION)....uvireerieeiieeeireeesireeesireeesreesereesssreesseeessseeesnseeessseens 56

Figure 4.1.Activity Diagram Example of ATMccccoviviininnenienenne 59

Figure 4.2.Use Case Diagram Example.........cccceecvveeviiencieeccieecieee, 60
Figure 4.3.GUI of the proposed system in state diagram 61
Figure 4.4. GUI of the proposed system in Case of an Activity Diagram
... 62
Figure 4.5. GUI of the proposed system in Case of Use-Case Diagram .63
Figure 4.6. Cyclomatic Complexity CompariSonccceeeveeveenerennnen. 65
Figure 4.7.Time COmMPAIISONcccuvveerurreeiereeeiieeeiieeeieeesaeeesneeesseeessneens 66
Figure 4.8.Time Comparison with other approaches............ccccecervennne 67
Figure 4.9. GUI of the proposed system in Case of SRS Documents69
Figure 4.10.GUI of the proposed system in Case of Functional and Non-
Functional Requirementsccceeeviiieeiiieciieeciee et 70
Figure 4.11. GUI of the proposed system in Case of User Story 71
Figure 4.12.Time Comparison for different Requirements 72
Figure 4.13. Effort Chart..........cccoooveriieiieiieeieeeeeeeee e 73

vil

LIST OF TABLES

Table

2.1 Comparison between Proposed Approach (UML Test Case
Generation Part and Requirement Test Case Generation Part) and

different model-based and Requirement-Based testing studies

4.1 The time consumed by each step in UML test case Generation

phase manually..........oooiiiiiiii

4.2 The time consumed by each step in Requirement test case

Generation phase manually................cooiiiiiiiii i

4.3 The number of test cases before and after optimization and

VALIAALION .« . ..o eeeeeeeeeeeeee et eeee e e e eeeeeeeaeeeeaeeeeeeeeeeennene

viil

Page

75

CHAPTER 1

INTRODUCTION

CHAPTER 1
INTRODUCTION

Software testing is considered one of the important phases in software
development life cycle. Testing process is considered the key to success of any
software. The development life cycle total cost is considered to be high. For this
reason, many studies have been conducted to minimize the associated cost and
human effort to fix bugs and errors, and to improve the quality of testing process
by automatically generating test cases [1]. Test automation is the process of
using separate software to manage and evaluate the fulfillment of test cases and
to compare the expected outcomes with the generated ones [2]. Moreover, the
automation process is used to generate test cases with minimum human
intervention, which will consequently help to minimize total cost. Different

studies are carried out for test case generation techniques [3].

There were many approaches in testing, as code-based testing, requirement-
based testing, model-based testing and search-based testing approach. Code-
based testing corresponds to the testing that is carried out on code development,
code inspection, unit testing in software development process. Requirements-

based testing, on the other hand, is a testing approach in which test cases are

2

derived from requirements. These tests aim to test all the requirements.
However, it is difficult to achieve complete testing as some requirements can be
tested by a single test case, while others need to be verified by a set of test cases.
Moreover, even when a full set of requirements-based test cases are applied to a
system, this does not ensure that the entire system has been tested [13]. Testing
requirements helps in increasing the quality of results specially when carried out
at an early stage. In waterfall models, testing can be conducted as soon as
executable software (even if partially complete) exists. Most testing occurs after
system requirements have been defined and then implemented in testable
programs. In contrast, under an agile approach, requirements, programming, and
testing are often done concurrently. According to the continuous changing and
increasing of requirements, customer involvement is mandatory. Agile
development is aligned with the view to face the challenges of an increasingly
volatile marketplace, changing requirements, customer involvement, priorities
and shorter deadlines [14]. Whereas functional requirements are mostly written
using use cases with textual description, which is too complicated to perform

further processes on them as generating a test case process.

Model-based testing (MBT) is the automatic generation of software test
procedures, using models (UML diagrams) of system requirements and behavior.
The Unified Modeling Language (UML) diagrams are divided into two main
parts; structural diagrams (i.e. class diagram) and behavioral diagrams (i.e.
activity, use-case and state diagrams). Structural diagrams are used to show the
structure, style or design of the software, while behavioral ones are used to
clarify the steps in which the software will pass through until it reaches the
desired output. In other words, it shows the flow of events. Whilst Search Based
Software Testing (SBST) is a branch of Search Based Software Engineering
(SBSE), in which optimization algorithms are used to automate the search for

test data that maximizes the achievement of test goals, while minimizing testing

3

https://en.wikipedia.org/wiki/Agile_software_development

costs [9, 10, 11, 12]. The optimization of the generated output can have different
techniques, as reducing the number of test cases, test cases prioritization, as well
as minimizing time, increasing performance, maximizing the quality of

outcomes, etc.

Testing may be performed in the last phase of the software development life
cycle or at an early stage. If the process is carried out at early phase of the
development life cycle; it saves more time and effort to detect errors. At later
stages, enormous errors would be generated as soon as the code is completed,
where it demands a lot of code correction and modification. Therefore, testing
process should be carried out at the beginning of software development life cycle
(requirements and design phases) to save time and cost. For this reason, model-
based testing [4, 5, 6] and requirement-based testing [13] were preferable rather
than code-based testing [7, 8] to generate test cases from UML diagrams

(behavioral diagrams) during the design phase.

Considering the previously mentioned testing techniques, it was found that the
code-based methodology does not detect faults early as in the model-based and
requirement-based approaches because it depends on the source code of the
program to be tested while the other two approaches depend on the diagrams and
requirements specifications that was constructed and found in an early stage

before implementation.

The quality of the generated test cases is the main factor that determines the
quality and efficiency of the testing phase. Whereas the test cases should be
validated against recognized quality standards, which would determine the
degree of their functional coverage that identifies their level of applicability as

well as their acceptable form [15, 16, 17, 18, 19].

Many metrics are being used to measure the quality of the test cases being
generated, as the cost, time, complexity of generation, effort, coverage criteria,
etc. [20, 21]). The coverage criteria are considered as a set of metrics that is used
to check the quality of the test cases extracted from the behavioral models. This
metric checks how well the test cases cover the executable test paths that they
are mapped to [22]. They contain many types, such as the branch coverage
criterion, full predicate and full condition coverage criteria and all basic paths
coverage criterion. Cyclomatic complexity is software metric that provides a
quantitative measure of the logical complexity of programs developed by
Thomas J. McCabe in 1976 [23, 24, 25]. It can be used in the context of the basis
path testing methods. Whereas the basis path testing is a structured testing or
white box testing technique that is used to design test cases intended to examine
all possible paths of execution at least once. The value computed for the
cyclomatic complexity defines an upper bound for the number of linearly
independent paths in the basis set of a program [26]. The cyclomatic complexity
can be computed using different ways; the number of regions in the graph

corresponds to the cyclomatic complexity.
V(G)=E—-N+2 (1)
where E is the number of edges and N is the number of nodes in the graph G.
V(iG)=P+1)
where P is the number of predicates i.e. binary decision nodes (with two
outgoing edges).

The V(G) can also be used to get all the test paths required to test the execution
and the exit of the loops. Therefore, test paths number computed by the
cyclomatic complexity covers: Branch coverage (two outgoing edges from

decisions), Condition coverage (multiple outgoing edges) and the All-basis paths

coverage that covers loops at least once. The cyclomatic complexity function
V(G) has two main properties that make up a powerful testing criterion. The first
property is its ability to determine the number of test paths that are necessary to
achieve the full branch coverage. The second property is determining the number
of test paths needed to achieve a full path coverage, which only requires
covering all the linearly independent paths and not all the paths whose

calculation is impractical.

Test data generation, on the other hand, is the process of generating data (output)
according to simulated inputs [29, 30, 31, 32, 33, 34]. Symbolic Evaluation (also
referred to as Symbolic Execution) technique is used for test data generation. It
is used to simulate symbolic values of variables, instead of actual values, to act
as an input to the system under test to find the expected output according to those
inputs [27, 28]. Test data generation techniques are used to validate the
generated data, since the validation process increases the quality of the generated

test cases.

1.1 Problem Definition
The quality of any software should be ensured in every phase of the

software development life cycle, starting from the requirements elicitation to the
deployment of the final product. Consequently, the software testing process is
one of the main activities carried out in the software development life cycle. It is
often accounted for more than 50% of the total development costs. Thus, it is
imperative to reduce the cost and the human effort in finding bugs and errors and
to improve the effectiveness of software testing by automating the testing
process. Test automation can automate some repetitive but necessary tasks in a
formalized testing process already in place, or add additional testing that would

be difficult to perform manually.

