دراسة العلاقة بين مستوى عامل النمو المشابه للانسولين عرفي الدم ومرضى الهذيان المصابون بالبول السكري والغير مصابين به

رسالة توطئه للحصول على درجه الماجستير في أمراض الغدد الصماء

مقدمه من

طبيب محمد أبوزيد صابر بكالوريوس الطب و الجراحة

تحت إشراف

الأستاذ الدكتور /محمد فهمي عبدا لعزيز

أستاذ الباطنه العامة و الغدد الصماء والأيض كليه الطب-جامعه عين شمس

دكتور/تامر معمد فريد

أستاذ مساعد طب المسنين كليه الطب-جامعه عين شمس

د كتورة/رانيا سيد عبد الباقي

مدر س الباطنه العامة و الغدد الصماء والأيض كليه الطب-جامعه عين شمس

کلیه الطب جامعه عین شمس *2010*

Study of relation between serum IGF-1 level and dementia in Diabetic patients and non Diabetics.

Thesis

Submitted for partial fulfillment of master degree in Endocrinology

By **Mohamed Abou Zeid Saber** M.B, B.Ch

Supervised By

Prof. Dr. Mohamed Fahemy Abdelazzez

Professor of Internal Medicine & Endocrinology Faculty of Medicine-Ain Shams University

Dr. Tamer Mohamed Farid

Assist. Professor of Geriatric medicine Faculty of medicine- Ain-Shams University

Dr.Rania Sayed Abd EL-Baky

Lecturer of Internal Medicine & Endocrinology Faculty of medicine- Ain-Shams University

> Faculty of Medicine Ain Shams University 2010

Introduction

Dementia is the loss of mental functions -- such as thinking, memory, and reasoning -- that is severe enough to interfere with a person's daily functioning. Dementia is not a disease itself, but rather a group of symptoms that are caused by various diseases or conditions (*Engelberg*, 2004).

Vascular dementia and Alzheimer's disease are the most common forms of dementia in old people. Dementia is an enormous and frightening problem, which can only become worse as the average length of human life increases (*Watanabe et al.*, 2005).

Dementia develops when the parts of the brain that are involved with learning, memory, decision-making, and language are affected by one or more of a variety of infections or diseases. Although dementia has always been somewhat common, it has become even more common among the elderly in recent history. It is not clear if this increased frequency of dementia reflects a greater awareness of the symptoms, or if people simply are living longer and thus are more likely to develop dementia in their older age (*Yamamoto et al.*, 2005).

Diabetes is one of the most common metabolic disorders, and its prevalence increases with age. Pathological complications of diabetes affect several organs including the brain, (*Rita P et al.*, 2002). In addition to somatic and autonomic peripheral diabetic neuropathy, stroke and acute metabolic catastrophes; progressive end-organ damage to the brain is now recognized as a long-term complication of diabetes. This cerebral damage is manifested in impaired cognitive performance and subtle structural cerebral abnormalities. In addition, the risk of dementia is increased. (*Cukierman T et al.*, 2005)

Both type 1 and type 2 diabetes mellitus are associated with cognitive performance impairments. (Awad N et al., 2004). In type 1 diabetes mellitus this is reflected in a mild to moderate slowing of mental speed and a diminished mental flexibility. In type 2 diabetes cognitive changes mainly affect learning and memory, mental flexibility and mental speed. (Allen KV et al., 2004)

Insulin-like growth factor 1 (IGF-1) is a polypeptide protein hormone similar in molecular structure to insulin. It plays an important role in childhood growth and continues to have anabolic effects in adults (Velcheti, 2006). Also has an important role in nervous system homeostasis, including metabolic, neurotrophic, neuromodulatory and neuroendocrine actions (*Engelberg*, 2004).

IGF-1 is actively transported across the blood brain barrier and possibly produced locally in the brain (*Schulingkamp et al.*, 2000). It plays a role in brain development and is present in the brain throughout life, where it maintains appropriate neuronal functions and stimulates neuritic growth (*Engelberg*, 2004).

IGF-1 deficiency may be involved in cognitive deficits seen with aging, especially in neurodegenerative diseases such as Alzheimer's disease (*Dik et al.*, 2003). It exerts neurotrophic activities in the hippocampus, which is involved in learning and memory. A decrease in IGF-1 may result in the development of neurofibrillary tangles, one of the hallmarks of Alzheimer's disease (*Gasparini & Xu*, 2003).

Aim of Work

To study the relationship between serum levels of IGF-1 and incidence of dementia in older people.

Subjects and Methods:

• A cross-sectional case-control study will be conducted on 40 subjects, including 30 cases with dementia and 10 non-demented individuals. Participants age 60 years or more attending the inpatient and the outpatient clinic of geriatric department.

Group I "cases"; 30 individuals with a clinical diagnosis of dementia based on clinical history, examination and MMSE test score, with cut off point of 27.

Classified as:

Group I a: 15 demented diabetic patients **Group I b:** 15 demented non diabetic patients

Group II "controls"; 10 healthy volunteers' age and sex matched.

- All participants will be subjected to :
 - a. Full clinical history.

- b. Neurological examination and cognitive function assessment
- c. Serum (IGF-1) (by ELISA).
- d. Fasting and 2h post prandial blood sugar.
- e. Liver function tests (serum albumin, SGOT, SGPT).
- f. Kidney function tests (serum creatinine).

Exclusion criteria:

- 1. Alcoholic patients.
- 2. History of any endocrine disorders except (DM)
- 3. Chronic liver disease.
- 4. Kidney dysfunction.

References:

1. Allen KV, Frier BM, Strachan MWJ, Eur J Pharmacol (2004) 490: pp. 169–175

- 2. Awad N, Gagnon M, Messier C, J Clin Exp Neuropsychol (2004) 26: pp. 1,044–1,080.
- 3. . Cukierman T, Gerstein HC, Williamson JD, Diabetologia (2005) 48: pp. 2,460–2,469.
- 4. *Dik MG*, *Pluijn SM*, *Jonker C*, *et al* (2003): Insulin-like growth factor-1 (IGF-1) and cognitive decline in older persons. *Neurobiol Aging*; 24:573-581.
- 5. Engelberg H (2004). Pathogenic factors in vascular dementia and Alzheimer's disease. Dement Geriatr Cogn Disord; 18:278–298.
- 6. *Gasparini L, Xu H.* (2003): Potential roles of insulin and IGF-I in Alzheimer's disease. *Trends Neurosci*; 26:404–406.
- 7. *Rita Peila*, *Beatriz L. Rodriguez*, *and Lenore J. Launer* (2002): Type 2 Diabetes, APOE Gene, and the Risk for Dementia and Related Pathologies. *Diabetes*, *VOL.* 51, 1256
- 8. *Schulingkamp RJ,Pagano TC,Hung D,et al (2000):* Insulin receptors and insulin actions in the brain:Review and clinical implications. *Neurosci Biobehav Rev;24:855-872*.
- 9. *Velcheti V, Govindan R (2006):* "Insulin-Like Growth Factor and Lung Cancer". *Journal of Thoracic Oncology 1 (7): 607-610.*
- 10. Watanabe T, Itokawa M, Nakagawa Y et al. (2003): Increased levels of insulin-like Growth factor binding protein-3 in hypertensive patients with carotid atherosclerosis. Am J Hypertens; 16:754–760.
- 11. Yamamoto H, Watanabe T, Miyazaki A et al (2005): High prevalence of Chlamydia pneumonia antibodies and increased high-sensitive C-reactive protein In patients with vascular dementia. J Am Geriatr Soc; 53:583–589.

First and foremost, I feel always indebted to **Allah**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Mohammed Fahmy Abd Elaziz,** Professor of Internal Medicine and Endocrinology, Faculty of Medicine, Ain Shams University, for giving me the honor and great advantage of working under his supervision. His valuable teaching and continuing education to me extend far beyond the limits of this thesis.

I wish to introduce my deep respect and thanks to **Assist.**

Prof. Dr. Tamer Farid, Assistant Professor of Geritric dept, Faculty of Medicine, Ain Shams University, for his kindness, supervision and cooperation in this work

I am also delighted to express my deepest gratitude and cordial thanks to **DR. Rania Elsayed**, lecturer of Internal Medicine and Endocrinology, Faculty of Medicine, Ain Shams University, for her kind care and great assistance throughout this work.

I would like to express my thanks to **Dr. Tahane Abd El-monem**, Fellow of Biochemistry, Ain Shams
University Hospitals. For his cooperation in this work.

My deepest gratitude I extend to my whole family who offered me support, advice and motivation.

Mohamed abozeid 2010

LIST OF CONTENTS

Title	Page
	no.
List of Abbreviations	
List of Tables	VIII
List of Figures	XI
Introduction and aim of the study	1
Review of Literature	
Insulin-like growth factors (IGFs).	4
◆ Dementia	28
◆ Diabetes Mellitus	62
♦ DM, brain aging and IGF-1	74
role.	
Subjects and Methods	79
Results	87
Discussion	
Summary and Conclusion	110
Recommendations	113 114
References	
Appendix	
Arabic Summary	

LIST OF ABBREVIATIONS

A1C	Glycosylated hemoglobin
ACE	Angiotensin converting enzyme
AD	Alzheimer's disease
ACS	Acute coronary syndrome
ACTH	Adrenal corticotropic hormone
AGT	Abnormal glucose tolerance
ALS	Acid-labile subunit
AMI	Acute myocardial infarction
APP	Amyloid precursor protien
BCS	British Cardiac Society
BDS	Blessed Dementia scale
BUN	Blood urea nitrogen
CABG	Coronary artery bypass graft
CBD	Corticobasal degeneration
CDR	Clinical dementia rating
CHD	Coronary Heart Disease
CHF	Congestive heart failure
Ck	Creatine kinase

List of abbreviations

СРК	Creatinine Phosphokinase
Cr	Creatinine
CVD	Cardiovascular disease
CHMP2B	Charged multivesicular body protein 2B
CJD	Jakob-creutzfeldt disease
DLP	Dementia with Lewy bodies
DM	Diabetes Mellitus
ECG	Electrocardiogram
FBG	Fasting blood glucose
FSH	Follicle stimulating hormone
FTD	Fronto-temporal dementia
GH	Growth hormone
GHR gene	Growth hormone releasing gene
GHRH	Growth hormone releasing hormone
HTN	Hypertension
ICD-10	International classification of diseases (10 th
	revision)
IGF	Insulin-like growth factor
IGFBP	Insulin-like growth factor binding protein

List of abbreviations

IGFBP-R	Insulin-like growth factor binding protein
	receptor
IGF-IR	Insulin-like growth factor-I receptor
IHD	Ischemic heart disease
INR	International normalized ratio
IR	Insulin receptor
IRS	Insulin receptor substrate
ISAR-REACT	Intracoronary stenting and antithrombotic regimen - rapid early action for coronary treatment
MCI	Mild cognitive impairment
MI	Myocardial infarction
MMSE	Mini mental state examination
MW	Molecular weight
NGT	Normal glucose tolerance
NHS	National Health Service
NICTH	Non-Islet cell tumor hypoglycemia
OGTT	Oral glucose tolerance test
PD	Parkinson's disease
PPPG	Post prandial plasma glucose
PI3K	Phosphoinositol 3-kinase

List of abbreviations

ро	Oral administration
QALY	Quality adjusted life year
RCT	Randomised controlled trial
REACT	Rescue angioplasty following failed thrombolysis
rh IGF-I	Recombinant human insulin-like growth factor-I
SC	Subcutaneous administration
SD	Standard deviation
SD	Semantic dementia
SERM	Selective estrogen-reuptake modulator
SMK	Smoking
TGF-β	Transforming growth factor- β
VaD	Vascular dementia
WHO	World Health Organisation

LIST OF TABLES

Table	Title	Page
no.	Tables of review	no.
1	Biochemical data on IGFBPs	34
2	the Underlying biology of the dementias	41
3	clinical pharmacology of selected agents in AD treatment	59
4	Research criteria for diagnosis of dementia with Lewy bodies	64
5	frontotemporal lobar degeneration Variants	67
6	Etiologic classification of Diabetes Mellitus	73
7	Criteria for Diagnosis of Diabetes Mellitus	77
	Tables of results	
1	Descriptive data of all studied groups	102
2	Descriptive data of all studied groups in percentile form	103
3	Statistical comparison between the studied groups as regard	103
	gender using Chi-square test	
4	Comparison between the studied groups as regard past history	104
5	Comparison between the studied groups as regard family	104
	history	
6	Statistical comparison between the studied groups as regard	105
7	laboratory data Statistical companion between the ensure To and ensure These	106
7	Statistical comparison between the group Ia and group Ib as regard different parameters	100
8	comparison between sexes as well as smokers and non smoker	107
	as regarding IGF-1 in group (Ia)	
9	comparison between sexes as well as smokers and non	108
	smoker as regarding IGF-1 in group (Ib)	
10	Comparison between group I and group II (control group) as	109
4.4	regard IGF-1 using Unpaired t-test	110
11	Correlation between IGF-1 versus different variables among	110
12	group Ia using Spearman correlation test Correlation between IGF-1 versus different variables among	111
14	group Ib using Spearman correlation test	111
13	Best cut off, Sensitivity, specificity, PPV, NPV and accuracy of	112
	IGF-1 in prediction of dementia	

LIST OF FIGUERS

Fig.	Title	Page
no.	Figures of review	no.
1	Schematic diagram of IGF system.	5
2	Main components involved in the transition G1/S phase of	7
3	cell cycle	11
3	Intracellu lar signaling by the IGF-I receptor,IGF-IR autophosphorylates on tyrosine residues	11
4	Overview of insulin-like growth factor 1 receptor activation	13
-	and downstream signaling.	
5	Model of local and endocrine actions of IGFBPs.	15
6	Hospital Stays per 1,000 Medicare Beneficiaries Aged 65 and Older	30
7	Magnetic resonance imaging shoe difference between a normal brain and the brain of a man with AD	33
8	Percentage Changes in Selected Causes of Death	36
9	Projected increases in dementia cases for more developed	38
	countries	
10	Projected increases in dementia cases for less developed	39
11	countries Lifetime Risks for Alzheimer's by Age and Sex	41
12	Prevalence of neuropsychiatric symptoms in subjects with	47
12	mild cognitive impairment and subjects with AD	47
13	Prevalence of neuropsychiatric symptoms in subjects with subcortical VaD or cortical VaD	51
14	Hippocampal and cortical atrophy in VaD	52
15	Prevalence of neuropsychiatric symptoms in subjects with frontotemporal dementia or semantic dementia.	57
16	Relationship between (HbA1c) and micro- and macro vascular complications	69
17	The relationship between impaired insulin signaling and the	78
17	typical AD-associated neuropathology	70
Fig.	Title	Page
no.	Figures of results	no.
1	Statistical comparison between the there groups as	94
	regard (MMSE)	
2	Statistical comparison between different studied	94
	groups as regard(IGF-1) levels	

List of figures

3	Statistical comparison between Demented groups as regard IGF-1 levels	95
4	Statistical comparison between Demented groups as regard MMSE	96
5	Relation between smoking, and gender versus IGF among demented groups	97
6	The deference between serum level of IGF-1 dementia group (group I) and the control group (group II).	98
7	Correlation between IGF versus MMSE in Group Ia	99
8	Correlation between IGF-1 versus MMSE in Group Ib	100
9	Roc curve	101