

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

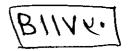
التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار


بالرسالة صفحات لم ترد بالأصل

HYDRODYNAMICS AND RESERVOIR EVALUATION STUDY OF THE NUBIA SANDSTONE, OCTOBER FIELD

GULF OF SUEZ, EGYPT

A THESIS

Submitted to the Faculty of Science, Menousia University, for the Degree of Doctor of Philosophy in Geological Sciences (Sedimentation)

BY

Gamal Ragab Gaafar Ragab

(M.Sc.)

Under Supervision Of

1:- Prof. Dr. :- M. Sh. Diab

Prof. of Geology

Faculty of Science

Menoufia University

2:- Prof. Dr. :- M. Y. Zein El-Din

Prof. of Geology

Faculty of Science

Al-Azhar University

:- Prof. Dr. :- Gamal El-Din. M. Attia

Prof. of Geology Faculty of Science Helwan University

Lame Sthis

Faculty of Science Menoufia University (1998)

ACKNOWLEDGMENTS

The author would like to introduce a special gratefulness and deepest gratitude to **Prof. Dr. M. Sh. Diab**, Professor of Geology, Faculty of Science, and Vice President for Graduate Studies and Research, Menoufia University, **Prof. Dr. M. Y. Zein El-Din**, Professor of Geology, and Geology Department head, Faculty of Science, Al-Azhar University, and **Prof. Dr. Gamal M. H. Attia**, Professor of Geology, Faculty of Science, Helwan University for their generous supervision, valuable leading comments and critical reading and reviewing of this work.

The author thanks all the staff members of the Geology Department, Faculty of Science, Menoufia University headed by **Prof. Dr. Mamdouh Abd El-Maksoud Mohammed** for their continuous help and useful discussions.

Special thanks are due to Mr. Ahmed Gad, Exploration general manager, Gulf of Suez Petroleum Company, Mr. Hesham Nashaat, Geological operation general manager, Gulf of Suez Petroleum Company, and Mr. Hesham Hashem, Geological operation division manager, Gulf of Suez Petroleum Company for their approval on getting the required data upon which the thesis is based.

The author would like to thank all colleagues that participated in the petroleum exploration in the Gulf of Suez area, whose genuine efforts formed the base of this study.

The appreciation is due to the Egyptian General Petroleum Corporation (E.G.P.C.), Gulf of Suez Petroleum Company (Gupco), and Amoco Egypt Oil Company authorities for their permission to use the data requested to complete this study.

The author thanks geologist **Mosaad El-Laboudy**, Gulf of Suez Petroleum Company, for his sincere help especially in the computer modeling for the geochemical analysis.

The author thanks Geologist Tarek Ihab, Gulf of Suez Petroleum Company, for his sincere help especially in the computer modeling for the log processing and petrophysical analysis.

Also, the author thanks Engineer Gamal Hamad, Gulf of Suez Petroleum Company, for his sincere help especially in providing all the data needed for the water movement and hydrodynamics, and his critical advices during the process of this subject.

Last but not least, the author acknowledges the ever continued support and kindness of my wife and my son **Mohammed**. Recognition of their share is beyond expression in words. The author dedicates this work to them gratefully.

ABOUT THE AUTHOR

Gamal Ragab Gaafar received his B.Sc. in Geology from Menoufia University in May., 1985, and M.Sc. in Marine Geology and Sedimentology in 1991. He worked as mud logger for one year with Sperry Sun Logging System. He joined the Gulf of Suez Petroleum Company (Gupco) in 26/7/1989. He has worked in the field study for sex months and moved to the operation group as a wellsite geologist till now. During his work in Gupco, he worked in most of the company operation fields (GOS, W.D, SINAI, and NILE DELTA). Now he is working as a senior wellsite and operation geologist, his current position is Ras Shukheir exploration supervisor.

Membership: SPE, EPEX, GSE

Gamal Ragab

CONTENTS

	Pagé No.
Chapter I	1
Introduction	1
History of exploration and discovery of October Field.	5
Objective of this study	6
Methods of study	7
Previous work	8
1 TOYTOUS WOLK	0
Chapter II	15
Stratigraphy	15
Physiography of the Gulf of Suez	15
Evolution of the Gulf of Suez	15
Stratigraphy of October field	17
Precambrian Rocks	19
Paleozoic Era	19
Devonian	19
Permo-Carboniferous	20
Mesozoic Era	. 21
Triassic and Jurassic	21
Cretaceous	21
·	21
Early Cretaceous Nubia sandstone Late Cretaceous	22
Cenomanian to Senonian	
	22 23
Cenomanian Raha Formation	23
Turonian to Lower Senonian (Abu Qada. Wata, and	22
Raha formations)	23
Abu Qada Formation	23
Turonian Wata Formation	33
Lower Senonian Matulla Formation	23
Upper Senonian Sudr Formation	24
Cenozoic Era	24
Paleocene to Early Eocene Esna Formation	24
Middle Eocene Thebes Formation	25
Late Eocene	25
Oligocene	25
Miocene	26
Gharandal Group	26
Nukhul Formation	27
Rudeis Formation	27
Kareem Formation	29
Lagia Member	29
Ras Budran Member	29
Ras Malaab Group (Miocene Evaporite)	29
Belayim Formation	30
Baba Member	30
Sidri Member	30
Feiran Member	30
Hammam Faraun Member	31
South Gharib Formation	31
Zeit Formation	31
Pliocene-Recent, Post Miocene sedimentation	32
Wardan Formation	33
Zaafarana Formation	33

El-Tor Formation	33
Ashrafi Formation	33
Chapter III	34
Structure and Tectonic Setting	34
Regional Tectonic and Structural Setting of the Gulf of Suez	34
October Field Structure	37
Method used for Study	37
Structural Setting	40
Configuration of the Structure	40
Structural cross sections	43
Tectonics	56
Origin and Tectonics of October Field	57
Structural control on the Nubia reservoir	59
Dip Closure and Structure Model of Trap	60
Exploration Application of the October Field	60
Chapter IV	63
Petrographic characteristics of Nubia Sandstone Reservoir	. 63
Analytical procedures	63
Results	63
Lithic - Wake lithofacies	64
Quartz arenite lithofacies	66
Lithic, Sublithic and Feldspathic wake lithofacies	68
Siderite - Siltstone lithofacies	69
Feldspathic - Lithic arenite lithofacies	70
Interlayered feldspathic wake/shale lithofacies	70
Depositional History and Reservoir Geometry	78
Diagenetic History of the Nubia Sandstone	79
Effect of diagenesis on pore system and reservoir quality	81
Reservoir Quality	85
Chapter V	88
Petrophysical And Reservoir Evaluation	88
Used Techniques and Methods of well logging Analysis	88
Formation Evaluation technique	89
Log [.] Data	89
Processing Parameters	89
Slow parameters	91
Clay Parameters	91
Measurements and corrections of fluid resistivity	. 91
Determination of formation temperature	91
Correction of mud resistivity, mud cake resistivity and	
mud filtrate resistivity at formation temperature	91
Determination of formation water resistivity	92
Fast parameters	92
Lithology - Matrix identification	92
Determination of shale content	92
Gamma Ray log	92
SP Log Neutron	. 94 94
Resistivity	94 94
Neutron-Density	. 94

	Determination of Effective Formation porosity	93
	Corrections	, 95
	Determination of True Resistivity	96
	Fluid Saturation	· 96
	Flushed Zone Saturation	96
	Hydrocarbon saturation	97
	Net pay calculation	97
	Oil water contact	97
,	Log Analysis Parameters	97
	Special core analysis	97
	Cementation Exponent "m"	97
	Formation Factors "a"	98
	Saturation Exponent "n"	98
	Formation water resistivity	102
	Average reservoir parameters	102
	Graphical Presentation of the Petrophysical parameters	102
	Lithosaturation Crossplots	102
	Petrophysical iso-parametric maps	103
	Input and output data	103
Results	s and Discussion	· 103
	Reservoir Zonation	103
	Reservoir Evaluation	104
	Vertical Distribution of Hydrocarbon Occurrences	107
	Lithosaturation Crossplots of the studied wells	107
	Lateral variation of hydrocarbon plays	122
	Isoparametric maps of the Nubia sandstone reservoir rocks	125
	Kaolinite effect on the permeability	134
	Porosity and permeability	134
Chapter V		140
-	on Potentialities	140
•	ds of study	140
	Pyrolysis methods	140
	Vitrinite reflectance	141
	Thermal Burial history modeling	141
Results	s and Discussion	142
	Quantity of organic carbon	143
	Petroleum Generation potential	144
	Maturity - Vitrinite Reflectance "Ro"	145
	Maturity Tmax	149
•	Quality of organic matter	151
	Geothermal gradient	154
	Oil window concept of the drilled sections	155
	Thermal burial history modeling	159
	Time of hydrocarbon expulsion	166
Petrolaum e	nigration in October Field	166
renoieum	Quantitative assessment of petroleum resources	170
~· · · ·	•	
Chapter VI		177
	mics And Reservoir Performance	177
Origin	and causes of reservoir pressures	174
	Artesian water system	177
	Osmoses Pourme Company	177
	Reverse Osmoses	179

LIST OF FIGURES

Fig. No).	Page No
1.1	Location map of October field, Gulf of Suez	2
1.2	Conceptual cross section showing the distribution of reservoirs in October	
	producing trend	4
1.3	Generalized lithologic column for the Pre-Miocene sequence in the Gulf of	
1.4	Miocene Lithostratigraphy in the Gulf of Suez with calcareous nannoplankto	on
_	zonation and absolute ages	12
2.1	The Gulf of Suez dip provinces and hinge zones	16
2.2	Generalized lithology of the penetrated rock units in October field	18
2.3	Generalized stratigraphic section of the Miocene rocks in the Gulf of Suez	
_	region	28
3.1	Plate tectonic setting of the Gulf of Suez and Red Sea rifts	35
3.2	Time contours in (micro second) on top Kareem Formation showing the	
	tectonic setting of October field	38
3.3	Magnetic Basement shape map of October area	39
3.4	Fault plane map of the main Nubia Clysmic fault of October field	41
3.5	Top Nubia structure contour map, October field.	42
3.6	Location map showing the lines of cross sections, October field	46
3.7	Cross section No. 1, Strike line, October field, Gulf of Suez	47
3.8	Cross section No. 2, Dip line, October field, Gulf of Suez	48
3.9	Depth migrated seismic line, W 88-A4 aquisition test line through the	
0.10	crestal G platform area of the Main field area	49
3.10	Cross section No. 3, Dip line, October field, Gulf of Suez	50
3.11	Cross section No. 4, Dip line, October field, Gulf of Suez	51
3.12	Cross section No. 5, Dip line, October field, Gulf of Suez	52
3.13	Cross section No. 6, Dip line, October field, Gulf of Suez	53
3.14	Cross section No. 7, Dip line, October field, Gulf of Suez	54
3.15	Subcrop map of the Pre-Miocene section, October field	55
3.16 3.17	Schematic cross section showing evolution of October field Structure	58
	Schematic structural model of October oil field	62
4.1 4.2	OCT A2B well model Showing the Nubia sandstone lithofacies zones	65
4.2	Photomicrograph showing poorly to moderately sorted, subrounded to	
	subangular fine to coarse quartz grains, with rock fragments and traces of feldspars, the framework is supported by argillaceous matrix	
4.3	Photomicrograph showing moderately well sorted, rounded to subrounded,	72
٦.5	fine to medium grained quartz grains and excellent intergranular primery	
	porosity, with traces of feldspars, rock fragments, pore throats are somewhat	4 11
	and restricted as compared to pore size due to close grain to grain point conta	
4.4	Photomicrograph showing poorly sorted, subrounded to subangular quartz	act. 72
.,.	grains, coarse silt to fine grained and fine to medium grained quartz grains,	
	and abundant dispersed argillaceous matrix with traces of rock fragments	73
4.5	Photomicrograph showing moderately to poorly sorted, subrounded, occasion	
	subangular, fine to medium grained to coarse quartz grained, and good intergi	ranular -
	porosity, minor amount of clay minerals are scattered throught the samples,	with
	some of rock fragments, feldspars.	73
4.6	Photomicrograph showing poorly to moderately sorted, subangular to subrou	
	fine to medium, occasionally coarse quartz grains with abundant of rock frag	ments
	and feldspars, the argillaceous matrix is common.	74
	Photomicrograph showing reddish brown to greyish black siltstone, the siltste	
	is highly sandy, and characterized by its enrichment with siderite nodules, the	ie
	sand grains range in size from medium to fine, subangular to subrounded, mo	derately
	to poorly sorted, the sand grainss occur as scattered fine quartz, iron oxides,	

	authigenic pyrite, and opaques, the matrix is represented by arginaceous materia	IS./4
4.8	Photomicrograph showing fine, medium, coarse, pebbly sandstone, moderately	
	to poorlysorted, subrounded to subangular, occasionally rounded, with abundant	
	feldspars, and rock fragments, kaolinite is common as clay minerals, the	
	argillaceous matrix occurs as dispersed coating to the detrital grains	75
4.9	Photomicrograph showing highly ferrugenous shale, poorly sorted, fine to	,,,
1.,,	very fine sandstone, angular to subangular, the siltstone is highly sandy, rich in	
	cabonaceous materials, the matrix of the sandstone is characterized by its	25
	ferrugenous enrichments, abundance of feldspars, and rock fragments	75
4.10	X-ray diffraction pattern of the selected samples for different facies	76
4.11	X-ray dispersive for hematite coating the quartz grains	77
4.12	X-ray dispersive for siderite cement	77
4.13	SEM, showing detrital view of kaolinite matrix, note the coarsly crystalline	
	texture of kaolinite platelets.	82
4.14	SEM, showing detrital view of the altered feldspars grains, note the scattered	
	platelets of the kaolinite encrusting the grains surface.	82
4.15	SEM, showing view of the pore filling, the matrix cluster is chlorite, while	
	the very finely crystalline to amorphous matrix is degraded kaolinite.	83
4.16	SEM, showing detailed view of the pore (intergranular pore), the pore filling	
	matrix is composed of vermicular stacks of coarsly crystalline kaolinite, while	
	the pore lining matrix is composed of fine crystalline kaolinite.	83
4.17	SEM, showing detailed view of prismatic overgrowth of quartz cement.	84
4.18	SEM, showing a detrital view of the stacks of pore filling kaolinite, notice the	04
4.10		-: 0 <i>1</i>
<i>-</i> 1	coarsely crystalline texture of the kaolinite platelets and abundance of micriporo	•
5.1	Processing flow chart	90
5.2	NPHI versus RHOB for OCT-A2B well	93
5.3	Effect of overburden pressure on formation factor data, October Field, Nubia	
	Formation	99
5.4	Formation factor data, October field, Nubia facies	100
5.5	Resistivity index data, October field, Nubia facies	101
5.6	Nubia stratigraphic zonation panel	105
5.7	Schematic fence diagram for the Nubia sandstone reservoir rock, October field.	106
5.8	Comparison between E-logs zones and petrology lithofacies	107
5.9	Lithosaturation crossplot, OCT-A2B well	108
5.10	Lithosaturation crossplot, OCT-C2 well	109
5.11	Lithosaturation crossplot, OCT-C3 well	111
5.12	Lithosaturation crossplot, OCT-C4 well	112
5.13	Lithosaturation crossplot, OCT-A5B well	113
5.14	Lithosaturation crossplot, OCT-A3 well	115
5.15	Lithosaturation crossplot, OCT-C1 well	116
5.16	Lithosaturation crossplot, OCT-B2 well	117
5.17	Lithosaturation crossplot, OCT-B1 well	119
5.18	Lithosaturation crossplot, OCT-B3 well	120
5.19	Lithosaturation crossplot, OCT-OCT-A1 well	121
5.20	Lithosaturation crossplot, OCT-GS 196-2 well	123
5.21		
	Lithosaturation crossplot, OCT-A4A well	124
5.22	Iso-shaliness value distribution map of the Nubia reservoir rock	127
5.23	Isoeffective porosity map of the Nubia sandstone reservoir rock.	128
5.24	Iso water saturation distribution map of the Nubia sandstone reservoir rock.	129
5.25	Iso hydrocarbon saturation map of the Nubia sandstone reservoir rock	130
5.26	Iso gross sand distribution map of the Nubia sandstone reservoir rock	131
5.27	Iso net pay distribution map of the Nubia sandstone reservoir rock	132
5.28	Diagrammattic relaltionships between the average reservoir parameters of the Nu	
	sandstone,October field.	133
5.29	Crossplots showing the relationships between permeability and kaolinite%, clays	•
	core porosity, and visual porosity for the Nubia sandstone, October field.	136
	•	

	VII .	
5.30	Crossplots showing the relationships between petrophysical and petrographical	
	paramaters.	137
5.31	Crossplots showing the relationships between different petrophysical parameters	
5.32	Crossplots showing the relationships between different petrophysical parameters and Gamma Ray.	139
6.1	Organic richness of the potential source rock as indicated by the total organic	,
	carbon content for the studied wells.	146
6.2	Hydrocarbon generating potential expressed in the pyrolysis-S2 value for the	
	studied wells	147
6.3	Vitrinite reflection in oil measurements (Ro%) for the studied wells	148
6.4	Tmax versus HI for the studied wells	150
6.5	Van-Krevelen type diagrams for the studied wells showing the kerogen type	
	of the penetrated section of Miocene, Thebes, Esna, and Sudr formations	152
6.6	Van-Krevelen type diagrams for the studied wells showing the kerogen type	
	of the penetrated section of Matulla-Wata, Abu Qada-Raha, and Nubia	
6.7	formations	153
6.8	Mud temperature versus time elapsed since circulation stopped Horner type plot for the mud temperature buildup	156
6.9	Geothermal gradient map of October field	156 157
6.10	Thermal burial history of the sedimentary section penetrated by the	137
0.10	well GS 197-2	160
6.11	Measured (Ro%) and calculated (TTI) measurements of GS 197-2 well	160
6.12	Thermal burial history of the sedimentary section penetrated by the	
	well GS 173-3	161
6.13	Measured (Ro%) and calculated (TTI) measurements of GS 173-3 well	161
6.14	Thermal burial history of the sedimentary section penetrated by the well	
	EE 85-1A	162
6.15	Measured (Ro%) and calculated (TTI) measurements of EE 85-1A well	162
6.16	Thermal burial history of the sedimentary section penetrated by the well	
6.17	GG 83-3	163
6.17	Meaured (Ro%) and calculated (TTI) measurements of GG 83-3 well	163
6.18	Thermal burial history of the sedimentary section penetrated by the well DD 83-1	174
6.19	Measured (Ro%) and calculated (TTI) measurements of DD 83-1 well	164 164
6.20	Outline of present day basins, northern Gulf of Suez	167
6.21	Migration path ways in October oil field	168
6.22		169
6.23	Hydrocarbons generated, migrated, and accumulated in the area of study and its	
		175
6.24	Hydrocarbons generated, migrated, and accumulated in the area of study with	
		176
7.1		178
7.2		178
7.3 7.4		183
7.4	Nubia reservoir type log, composed from two wells, representing a typical well in the structure.	184
7.5		186
7.6		186
7.7		187
7.8	October field pressure trends, pressure from various RFT logging runs are	
	plotted againest depth	188
7.9		189
7.10	Reservoir model section showing the sand body above M-II shale is juxtaposed	
.		190
7.11		191
7.12	Depth versus bubble point pressure.	191

ij

, VIII

7.13	Dip cross section of Nubia reservoir subdivisions	192
7.14	Heavy oil geometry, October field	194
7.15a	TDT model, time laps techniques Oct-b3 well.	197
7.15b	TDT model, time laps techniques Oct-b3 well.	198
7.16	Location map of water movement cross sections of the main Nubia reservoir,	
	October field	. 201
7.17	A-A Water movement cross section	203
7.18	B-B Water movement cross section	204
7.19	C-C Water movement cross section	205
7.20	D-D Water movement cross section	206
.7.21	E-E Water movement cross section	207
7.22	Schematic reservoir geological model	208
7.23	October field main Nubia zone production performance versus time	211
7.24	October field Main Nubia zone forecast.	211
7.25	Structure contour map on top Nubia showing the location of water injectors	
	and response of the wells for water flooding.	213