DETECTION OF ENDOTHELIAL DYSFUNCTION IN NON RHEUMATIC ADULT AF PATIENTS

Thesis Submitted For Partial Fulfillment of Master Degree In Cardiology

By
Ragab Mohammed Abdel-hafez Allam
M.B.B.Ch

Under Supervision of

Prof. Dr. Wagdy Abd El-Hameed Galal

Professor of Cardiology Faculty of Medicine, Ain Shams University

Asst Prof. Dr. Hayam Mohammed El-Damanhoury

Asst Professor of Cardiology Faculty of Medicine, Ain Shams University

Dr. Ayman Mortada Abd-Elmoteleb

Lecturer of Cardiology
Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2010

تقييم الكفائة الوظيفية للخلايا المبطنة لجدران الأوعية الدموية في المرضى الذين يعانون من ذبذبة أذينية غير منتظمة

رسالة مقدمة توطئة للحصول على درجة الماجستير في أمراض القلب مقدمة من

الطبيب/ رجب محمد عبدالحافظ علام

بكالوريوس الطب و الجراحة

تحت إشراف

الأستاذ الدكتور/ وجدى عبدالحميد جلال

أستاذ أمراض القلب كلية الطب - جامعة عين شمس

الأستاذة الدكتورة/ هيام محمد الدمنهوري

أستاذ مساعد أمراض القلب كلية الطب - جامعة عين شمس

الدكتور/ أيمن مرتضى عبدالمطلب

مدرس أمراض القلب كلية الطب - جامعة عين شمس

> كلية الطب جامعة عين شمس 2010

ACKNOWLEDGEMENT

First and foremost, Thanks to GOD

I would like to express my deepest gratitude and sincere thanks to **Prof. Dr. Wagdy Abd El-Hameed Galal**, professor of Cardiology, Faculty of Medicine, Ain-Shams University, for his instructive supervision, continuous guidance and valuable instructions.

I am greatly indebted to **Asst Prof. Dr. Hayam Mohammed El-Damanhoury**, Asst Professor of Cardiology, Faculty of medicine, Ain-Shams University, for her expert guidance, valuable suggestions and excellent supervision.

I will never be able to express my deepest feelings and profound gratitude to **Dr. Ayman Mortada Abd-Elmoteleb**, Lecturer of Cardiology, Faculty of Medicine, Ain Shams University, for suggesting and planning the design of this work.

I owe much to the whole staff members in electrophysiology and radiology departments in National Heart Institute for their support, advice, and cooperation.

Finally, I would like to address my family especially my parents and my wife and thank them for their unlimited support and care.

To my parents and my wife who restore the rhythm of my life and to my baby who maintains it.

CONTENTS	Page
List of abbreviations	1
List of figures	4
List of tables	6
Introduction	8
Aim of the work	11
Review of literature	12
• Chapter 1	12
• Chapter 2	37
• Chapter 3	55
Patients and methods	73
Results	80
Discussion	93
Case study	104
Complications	113
Conclusion	114
Summary	115
Limitations	120
Recommendations	121
Master table	123
References	136
Arabic summary	

LIST OF ABBRRVIATIONS

ACE	Angiotensin converting enzyme
AF	Atrial fibrillation
ARBs	Angiotensin receptor blockers
AV	Atrioventricular
BAD	Brachial Artery Diameter
Bpm	Beat per minute
BUN	Blood urea nitrogen
CAD	Coronary artery disease
CBC	Complete Blood Count
CCU	Cardiac Care Unit
CHADS ₂	Risk stratification scheme for high-risk patients with AF who should be targeted for anticoagulation
CHF	Congestive heart failure
CXR	Chest x-ray
DC	Direct current
DCC	Direct current cardioversion
ECG	Electrocardiogram
ED	Endothelial dysfunction
EDCF	Endothelium Derived Contracting Factor
EDHF	Endothelium Derived Hypopolarizing Factor
EDRF	Endothelium Derived Relaxing Factor

eNOS	endothelial Nitric Oxide Synthase			
FMD	Flow Mediated Dilation			
HCM	Hypertrophic Cardiomyopathy			
HF	Heart Failure			
HRV	Heart Rate Viability			
ICAM	Intercellular adhesion molecule-1			
INR	International Normalization Ratio			
IV	Intra venous			
LA	Left atrium			
LAA	Left atrial appendage			
LDL	Low-density lipoprotein			
LVH	Left ventricular hypertrophy			
MI	Myocardial infarction			
NICE	National Institute for Health and Clinical Excellence in UK			
NO	Nitric oxide			
PAF	Paroxysmal atrial fibrillation			
PAI-1	Plasminogen activator inhibitor-1			
PET	Positron Emission Tomography			
PVs	Pulmonary veins			
RA	Right atrium			
SEC	Spontaneous echo contrast			
SPB	Systolic blood pressure			
31 0	Systolic blood pressure			

TIA	Transient ischemic attack
tPA	Tissue plasminogen activator
TTE	Transthoracic echocardiography
UK	United Kingdom
VCAM	Vascular cell adhesion molecule-1
vWF	von Willebrand factor
WPW	Wolff-Parkinson White syndrome

LIST OF FIGURES

No.	Title	Page
1	Structure and mechanisms of atrial fibrillation.	18
2	Focal triggers mechanism of AF.	20
3	Treatment strategy decision tree.	37
4	Rate-control treatment algorithm for permanent (and some cases of persistent) atrial fibrillation.	43
5	Rhythm control treatment algorithm for paroxysmal atrial fibrillation.	48
6	Cardioversion treatment algorithm.	49
7	FMD in patients with AF and control group.	83
8	FMD in patients during AF, 30 days after SR and 60 days after SR.	85
9	FMD during AF, after 30 days from SR, after 60 days from SR and FMD in control group.	86
10	Relation between frequency of DC shock and AF duration.	88
11	Relation between amount of joules and AF duration.	89
12	Relation between LA diameter and	90

	frequency of DC shock.	
13	Relation between LA diameter and amount of joules.	90
14	ECG of the patient before cardioversion.	105
15	Brachial artery diameter at baseline before CV.	105
16	Brachial artery diameter at hyperemia before CV.	106
17	Brachial artery diameter at baseline in control subject.	107
18	Brachial artery diameter at hyperemia in control subject.	108
19	ECG of the same patient after cardioversion.	109
20	Brachial artery diameter at baseline after one month from CV.	110
21	Brachial artery diameter at hyperemia after one month from CV.	110
22	Brachial artery diameter at baseline after two months from CV.	111
23	Brachial artery diameter at hyperemia after two months from CV.	111

LIST OF TABLES

No.	Title	Page
1	Etiologies and Factors Predisposing Patients to AF.	24
2	Clinical Evaluation in Patients with AF	34
3	Methods for Clinical Assessment of Endothelial Function.	65
4	Clinical characteristics of patients with atrial fibrillation and controls.	81
5	Baseline brachial artery diameter in patients during AF and control group.	82
6	Brachial artery diameter at hyperemia in patients with AF and control group.	82
7	FMD in patients with AF and control group.	83
8	Baseline brachial artery diameter in patients during AF, 30 days after SR and 60 days after SR.	84
9	FMD in patients during AF, 30 days after SR and 60 days after SR.	84
10	Relations between FMD during AF, 30 days after SR, 60 days after SR and lone AF, non lone AF.	86
11	Relations between FMD during AF, 30 days	87

	after SR, 60 days after SR and No of risk factors.	
12	FMD during AF, 30 days after SR, 60 days after SR and AF duration.	87
13	Relation between frequency of DC shock, amount of joules and AF duration.	88
14	Relation between LA diameter, frequency of DC shock and amount of joules.	89
15	FMD in patients during AF, 30 days after SR, 60 days after SR and EF.	91
16	Relation between FMD and LA diameter.	92
17	FMD and type of gender.	92

INTRODUCTION

Atrial Fibrillation is a supraventricular tachyarrhythmia characterized by uncoordinated atrial activation with consequent deterioration of mechanical function. On the ECG, rapid oscillations, or fibrillatory waves that vary in amplitude, shape and timing, replace consistent P waves, and there is an irregular ventricular response that is rapid when conduction is intact (Bellet S et al., 1971).

Atrial fibrillation (AF) is the most common arrhythmia in clinical practice. It is often rapid, irregular, and might arise from multiple ectopic atrial foci. Twenty percent of patients with paroxysmal atrial fibrillation (PAF), defined as lasting less than 7 days (and spontaneous conversion), progress to chronic (persistent or permanent) AF, defined as lasting more than 30 days (Page et al., 2004).

The prevalence of AF increases dramatically with age and is seen in as high as 9% of individuals by the age of 80 years. In high-risk patients, the thromboembolic stroke risk can be as high as 9% per year and is associated with a 2-fold increase in mortality (Falk et al., 2001).