GENETIC VARIATIONS IN ASCITES OF COMMERCIAL BROILER CHICKEN STRAINS

AMER MAKRAM ALI SAWY

B.Sc. Agric. Sc. (Poultry Production), Cairo University (Fayoum Branch), 2005

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE in Agricultural Science (Poultry Breeding)

Department of Poultry Production Faculty of Agriculture Ain Shams University

2010

Approval Sheet

GENETIC VARIATIONS IN ASCITES OF COMMERCIAL BROILER CHICKEN STRAINS

By AMER MAKRAM ALI SAWY

B.Sc. Agric. Sc. (Poultry Production), Cairo University (Fayoum Branch), 2005

	ned Abdelmoniem Kosbatus of Poultry Breeding, Faculty of Agriculture, University
	n El- Dein Hassan
Prof . Dr. Ahmed Prof. of Pou University	Galal El-Sayed
	Hatem Ibrahim El-Attarltry Breeding, Faculty of Agriculture, Ain Shams
Date of Examina	tion: / / 2010

GENETIC VARIATIONS IN ASCITES OF COMMERCIAL BROILER CHICKEN STRAINS

AMER MAKRAM ALI SAWY

B.Sc. Agric. Sc. (Poultry Production), Cairo University (Fayoum Branch), 2005

Under the supervision of:

Prof. Dr. Ahmed Hatem Ibrahim El-Attar

Prof. of Poultry Breeding, Department of Poultry Production, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Prof. Dr. Moataz Mohamed Fathi

Prof. of Poultry Breeding, Department of Poultry Production, Faculty of Agriculture, Ain Shams University.

Prof. Dr. Ahmed Galal El-Sayed

Prof. of Poultry Breeding, Department of Poultry Production, Faculty of Agriculture, Ain Shams University.

ABSTRACT

Amer Makram Ali: Genetic Variations in Ascites of Commercial Broiler Chicken Strains. Unpublished M.Sc. Thesis, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, 2010.

This experiment was carried out at poultry breeding farm, Poultry Production Department, Faculty of Agriculture, Ain shams University. The objective of this study is to investigate the hematological and morphological changes associated with Ascites syndrome in broiler chicks. Broiler chicks from four strains (Arbor Acres, Avian, Cobb and Hubbard) were reared under the same environmental, managerial and hygienic conditions from 1 to 42 day of age. The chicks received a commercial diets (starter, grower and finisher) ad libitum. At 39 days of age, 10 chicks from each strain were randomly chosen for LPS injection. Body weight, ascites mortality, arterial pressure index (API=right ventricular/total ventricular weight ratio), hematocrit values and proportional lung weight (lung weight/body weight*100) were determined. The present result showed that the hematocrit level was significantly reduced at 48 hr post LPS injection. Also, LPS-induced hypocholestrolmia at 48 hr post LPS injection in all strains. The arterial pressure index of injected-group had significantly higher than that of control-group. Lung and liver sizes as a percentage of body weight in injected-group becomes higher than in controlgroup. With respect to strain effect, The Cobb broiler chicks had significantly higher hematocrit level, plasma total protein, globulin and cholesterol concentrations compared to other strains.

Key Words;

broiler chicks, Lipopolysaccharide, hematological traits, arterial pressure index , Pulmonary Hypertension , Right Ventricular

ACKNOWLEDGMENT

Firstly, I wish to express my prayerful thanks to **ALLAH** for every thing.

I would like to initiate display profuse thank to the members of my supervising committee, **Prof.Dr.A.H.El-Attar** (Principle Supervisor), Professor of Poultry Breeding, Poultry Production Department, Faculty of Agriculture, Ain shams University. On his treated parental sought by him during this work, support advice, guidance revising the manuscript and interest..

I wish to express my sincere gratitude to **Prof. Dr. M.M. Fathi**, Professor of Poultry Breeding, Poultry Production Department, Faculty of Agriculture, Ain Shams University for his supervision and encouragement,

Special thanks to and deep gratefulness are due to **Dr. A. Galal**, Professor of Poultry Breeding, Poultry Production Department, Faculty of Agriculture, Ain shams University. For his supervision, writing, encourage and interest.

Many thanks also due to **Dr A. Zein El-Dein** and **Prof. Dr. H. Ayoub** Professor of Poultry Breeding, Poultry Production

Department, Faculty of Agriculture, Ain Shams University for his encourage, interest and support advice.

I deeply grateful indebted to **Dr.M.Mahrous and Dr.A.M.Hassan**, Lecturer Poultry Production Department, Faculty of Agriculture, Ain Shams University for his encourage, interest and support advice.

I would also like to express thanks Mr.A.Nazmy, Miss. L Radwan , Mr.G.N.Rayan, Mr.H.Madain, Mr.A.M.Abdelmoniem and all staff members of Poultry Production Department.

Special thanks my Parents and all my Family for continuous support and help at this work.

Special thanks to and deep gratefulness are due to **Arab Poultry Breeders Company** on the support of the experiment the chicks for free 4 strains and interest in scientific research Gratitude necessary to **Scientific Research Academy** on this scholarship and finance through Three years sharing with **Faculty of Agriculture – Ain Shams University**.

CONTENTS

	Page
LIST OF TABLES	iv
LIST OF FIGURES	٧
LIST OF PHOTOS	vi
LIST OF ABBEVRATIONS	vii
INTRODUCTION	1
REVIEW OF LETERATURES	3
.1. Phenotypic Characteristics.	3
1.1. Overview on the Intensive Selection	3
1.2. Body weight, Feed consumptions and Feed conversion	3
1.3. Carcass Characters	4
1.4. Abdominal Fat .	6
1.5. Mortality .	6
2. Immune Response Traits.	7
2.1. Immune system Mechanisms .	7
2.2. Immuno competence measurements .	
2.2.1. Blastogenic response to phytohemagglutinin-P (PHA-P)	8
2.2.2.Heterophils/lymphocytes ratio .	9
2.2.3.Lymphoid organs weight .	
3. Ascites trait	11
3.1. Overview on ascites syndrome.	11
3.2. Pulmonary hypertension	
3.3. Ascites (Pulmonary hypertension syndrome - PHS)	
3.4. Right ventricle to total ventricle weight (RV/TV ratio)	
3.5. Experimental models of inducing pulmonary	17
hypertension and ascites	
3.6. Incubational hypoxia and growth	
3.7. Blood and plasma viscosity	
3.8. Ascites and genetic makeup.	21
MATERIALS AND METHODS	

1.Genetic Flocks and Management.	24
Measurements and observations	
2.1. Phenotypic parameters	
2.1.1. Body weight	
2.1.2. Feed consumption and feed conversion ratio	26
2.1.3. Carcass measurements	26
.2.1.4 Blood constituents	26
3.1 Immunocompetence measurements	
3.1.1 Phytohemagglutinin injection (In vivo cell-mediated	27
immunity assay)	
3.1.2. Relative lymphoid organs weight	27
3.1.4. Heterophils / Lymphocytes ratio .	27
4. Ascites experiment	28
4.1. Lipopolysaccharide injection	28
4.1.1. Blood constituents	28
5. Statistical analyses	
RESULTS AND DISCUSSION	
Phenotypic parameters	30
1.1. Body weight	30
1.2. Feed consumption and feed conversion ratio	
1.3. Carcass characteristics	34
1.4. Abdominal fat	38
2. Blood Parameters	40
3. Immunocompetence parameters	42
3.1. Cell-mediated immunity (CMI)	42
3.2. Relative lymphoid organs weight	44
3.3. Heterophils / lymphocytes ratio	46
4. Mortality rate	47
5. Ascites parameters	48
5.1. Blood constituents	
5.2. Red and white blood cells	55

5.3. Left and right ventricular	
5.4. Relative liver and lungs weight	
5.5.Ascites Mortality	
SUMMARY AND CONCLUSION	
REFERENCES	
ARABIC SUMMARY	

LIST OF TABLES

Table		Page
1	Composition and Chemical analysis of experimental	25
	diets.	
2	Body weight of Arbor Acres, Avian, Cobb and Hubbard	31
	broiler strains at different ages	
3	Body weight gain, feed consumption and feed	33
	conversion ratio of Arbor Acres, Avian, Cobb and	
	Hubbard broiler strains	
4	Body weight and edible meat parts weight of Arbor	35
	Acres, Avian, Cobb and Hubbard broiler chick strains.	
5	Breast, thigh and drumstick muscles weight of Arbor	37
	Acres, Avian, Cobb and Hubbard broiler chick strains.	
6	Blood constituent of Arbor Acers, Avian, Cobb and	41
	Hubbard broiler chicks.	
7	Absolute and relative lymphoid organs weight % of	45
	Arbor Acres, Avian, Cobb and Hubbard strains.	
8	Heterophils and lymphocytes count of broiler chicks as	47
	affected by strain.	
9	Hematological parameters of broiler chicks as affected	51
	by strain, LPS injection and their interaction	
10	Red and white blood cells count of broiler chicks as	57
	affected by strain, LPS injection and their interaction	
11	Total, left and right ventricular (as a percentage of body	61
	weight) of broiler chicks as affected by strain, LPS	
	injection and their interaction.	
12	Left and right ventricular (as a percentage of total	62
	ventricular) of broiler chicks as affected by strain, LPS	
	injection and their interaction .	
13	Liver and lung sizes (as a percentage of body weight) of	65
	broiler chicks as affected by strain, LPS injection and	
	their interaction .	

LIST OF FIGURES

Figure		Page
1	Diagrammatic summary of possible causes of increased	13
	pulmonary arterial pressure in broiler chickens resulting	
	in increased right ventricular workload.	
2	Ambient temperature recorded during the experimental period.	24
3	•	39
3	Absolute and relative abdominal fat weight of Arbor Acers, Avian, Cobb and Hubbard broiler chicks.	39
4	Toe-web swelling thickness (mm) of Arbor Acres (AA), Avian (AV), Cobb (COB) and Hubbard (HB) broiler strains.	43
5	Toe-web swelling (difference) of Arbor Acres (AA), Avian (AV), Cobb (COB) and Hubbard (HB) broiler strains.	43
6	Mortality rate (0-42 day) of Arbor Acres (AA), Avian (AV), Cobb (CO) and Hubbard (HB) broiler strains.	48
7	Effect of strain and LPS-injection on hematocrit level of broiler chicks.	52
8	Effect of strain and LPS-injection on plasma total protein, albumin and globulin of broiler chicks.	53
9	Effect of strain and LPS-injection on plasma cholesterol of broiler chicks.	54
10	Effect of strain and LPS-injection on heterophils and lymphocyte count of broiler chicks.	57
11	Mortality ratio after LPS-injection of Arbor Acers (AA), Avian (AV), Cobb (COB) and Hubbard (HB).	67
12	The time of mortality among strain after LPS-injection.	68

LIST OF PHOTOS

Photo		Pages
1	A cross sectional slices through the ventricle of two	63
	hearts. The section on the left of the heart for broiler	
	with ascites syndrome. The section on the right is the	
	heart of healthy broiler (42 days).	
2	The difference between injected and control-groups for	66
	appearance of lungs.	

LIST OF ABBREVIATION

ABBREVIATION	Mean
A/G	Albumin to Globulin
AA	Arbor Acres
AV	Avian
BW	Body Weight
CMI	Cell-mediated immunity
СОВ	Cobb
F.C	Feed consumption
F.C.R	Feed consumption rate
F.C. /∆wt	Feed conversion ratio
ΔWT	Weight gain
GLM	General Linear Model
GR	Growth Rate
Н	Heterophils
H/L	Heterophils/ Lymphocytes ratio
HCT	Hematocrit
НВ	Hubbard
LV	Left Ventricular
LV%	Left ventricular as a percentage of body
	weight
LV/TV	Left Ventricular/ Total Ventricular
LPS	Lipopolysaccharide
L	Lymphocytes
MER	Mercaptoethanol-Resisstant
PAP	Pulmonary Arterial Pressure
PAH	Pulmonary Arterial Hypertension
PCV/Hematocrit	Packed Cell Volume
PHA-P	Phytohemagglutinin-P
PHS	Pulmonary Hypertension Syndrome
RBC's	Red Blood Cells count

RV	Right Ventricular
RV%	Right ventricular as a percentage of body
	weight
RV/TV	Right Ventricle to the total ventricular
	weight
RVF	Right Ventricular Failure
RVH	Right Ventricular Hypertrophy
SRBC	Sheep red blood cells
SAS	Statistical analyses
SDS	Sudden Death Syndrome
TV	Total Ventricular
TV%	Total ventricular as a percentage of body
	weight
WBC's	White Blood Cells

INTRODUCTION

In poultry breeding, traits like growth rate and feed efficiency are of great interest because they have a major economic effect. Therefore, breeding programs aim to select birds with a higher growth rate and/or a higher feed efficiency. However, it is suggested that the improvement in growth rate or feed efficiency associated with same undesirable correlated responses such as increased incidence of defects in heart and lung functions and reduce adaptability to environmental conditions. This is concider with the resource allocation theory which states that when a population is genetically driven towards higher production, and thus allocates a higher proportion of resources to these traits, fewer resources remain to respond adequately to other demands, such as coping with unexpected stress factors. The selection of production traits in broilers has been accompanied by negative consequences on different aspects of the birds' physiology. These negative consequences are mainly due to the tremendous increase in body mass without parallel improvements in the internal organs, vascular system, and skeleton to support such a rapidly growing and large body mass. The negative characteristics, such as fatness, ascites, leg deformity, and reproduction problems, have a large impact on animal welfare and on the economics of poultry production. Ascites in broilers is an accumulation of liquid in the abdominal cavity resulting in mortality and condemnations. Originally detected several decades ago at high altitudes, this condition is now also found at low altitudes, where broilers are hypoxic during periods of rapid growth. Post-mortem examination of ascetic birds reveals straw-colored fluid in the abdominal cavities, enlarged hearts, pulmonary congestion, and abnormal livers and spleens.