

Microtensile Bond Strength of Different Adhesive Systems to Coronal versus Root Surface Dentin under Simulated Intrapulpal Pressure

Thesis

Submitted to the Faculty of Oral and Dental Medicine
Cairo University
In Partial Fulfillment of the Requirements for
The Master Degree in Operative Dentistry Department

By
Possy Mustafa Abdel Aziz Mahmoud
B.D.S (Cairo University, 2004)

Supervisors

Dr. Enas Hussein Mobarak

Associate Professor, Operative Dentistry Department
Faculty of Oral and Dental Medicine
Cairo University

Dr. Heba Ahmed Abdel Wanis El-Deeb

Lecturer, Operative Dentistry Department
Faculty of Oral and Dental Medicine
Cairo University

To Allah

For his mercy, generosity, powerful support and guidance

To my Mother and my Father

For their love and their enthusiastic support in every step of my life

To my Loving Husband

For his endless patience and forgiveness

To my sunshine, my terrific children Ayten and Yassin

For their tolerance and their sympathizing inspiration

Acknowledgements

I would like to express my deep and sincere gratitude to my supervisor, **Dr. Enas Hussein Mobarak**, Associate professor, Operative Dentistry Department, Faculty of Oral and Dental Medicine, Cairo University. Her wide knowledge and her logical way of thinking have been of great value for me. Her understanding, encouraging and personal guidance have provided a good basis for the present thesis.

I am heartily thankful to my supervisor, **Dr. Heba Ahmed Abdel Wanis El-Deeb**, lecturer, Operative Dentistry Department, Faculty of Oral and Dental Medicine, Cairo University, whose encouragement, guidance and support from the initial to the final level enabled me to develop an understanding of the subject.

I am grateful to Professor, **Dr.Mohamed Riad Farid**, head of the Operative Dentistry Department, Faculty of Oral and Dental Medicine, Cairo University, for his leadership, kindness and generosity in accepting to discuss the thesis, at this special vacation time of the year.

A Heartfelt thanks to my friends and colleges **Heba Helal Mounir El Sherbieny** and **Amr Abdel Aziz**, demonstrators, Operative Dentistry Department, Faculty of Oral and Dental Medicine, Cairo University, for their kind support and helpfulness that have been of great value in this study.

I owe my lovely thanks to my husband, **Ahmed Maher Abd El Aal**, officer engineer in the Armed Force, for teaching me a lot throughout my thesis especially in computer skills.

I would like to thank **Dalia Mustafa**, a chemist, at the central laboratories of the Egyptian Mineral Resources Authority, for her technical support in scanning electron microscope examination testing.

Also, I would like to thank Mr. Mohamed El Shahat, mechanical technician, for his valuable contribution in constructing the designed experimental tools used in this thesis.

Lastly, I offer my regards and blessings to all members of Operative Dentistry Department, Faculty of Oral and Dental Medicine, Cairo University, for their genuine support and help.

List of Contents

	Page
LIST OF TABLES	I
LIST OF FIGURES	II
INTRODUCTION	1
REVIEW OF LITERATURE	3
I- Bonding to coronal and root dentin surface	3
II- Simulated intrapulpal pressure and bond strength	15
III- Bond strength of different adhesive systems	30
AIM OF THE STUDY	41
MATERIALS AND METHODS	42
I- Materials	42
II- Methods	47
1. Selection of teeth	47
2. Preparation of tooth segment	47
3. Embedding of tooth segment	51
4. Preparation of the dentin surfaces	53
5. Grouping of the specimens	57
6. Intrapulpal pressure simulation assembly	58
7. Application of adhesive systems	61
8. Application of resin composite restorative material	61
9. Specially constructed large incubator	64
10. Testing procedures	66
Microtensile bond strength testing	66
Sectioning of the specimens	
Microtensile bond strength measurements	
Mode of failure	75
Scanning electron microscopic examination	75
11. Statistical analysis	76
RESULTS	77
1. Results of microtensile bond strength measurements	77
2. Failure mode analysis	83
DISCUSSION	95
SUMMARY AND CONCLUSIONS	106
REFERENCES	108
ARABIC SUMMARY	

List of Tables

		Page
Table (1):	Specification of the materials used	45
Table (2):	Steps of application of the adhesive systems	46
Table (3):	Solutions prepared for the study	47
Table (4):	Variables of the study	57
Table (5):	Interaction of variables for microtensile bond strength testing	58
Table (6):	Descriptive statistics and test of significance of the μTBS	
	(MPa) of the three adhesive systems bonded to coronal versus	
	root dentin surfaces under intrapulpal pressure simulation while	
	immersed in artificial saliva at 37°C.	79
Table (7):	Descriptive statistics and test of significance of the coronal and	
	root dentin surfaces μTBS (MPa) of the three adhesive systems	
	after intrapulpal pressure simulation while immersed in	
	artificial saliva at 37°C.	82
Table (8):	Failure mode percentage of the Adper Single Bond 2 adhesive	
	system bonded to coronal versus root dentin surfaces under	
	intrapulpal pressure simulation while immersed in artificial	
	saliva at 37°C.	84
Table (9):	Failure mode percentage of the Clearfil SE Bond adhesive	
	system bonded to coronal versus root dentin surfaces under	
	intrapulpal pressure simulation while immersed in artificial	
	saliva at 37°C.	86
Table (10):	Failure mode percentage of the Adper Easy One adhesive	
	system bonded to coronal versus root dentin surfaces under	
	intrapulpal pressure simulation while immersed in artificial	
	saliva at 37°C	88

List of Figures

T		Page
Figure (1):	Scotchbond echant.	42
Figure (2):	Adper Single Bond 2 adhesive	42
Figure (3):	Clearfil SE Bond self-etch adhesive system	43
Figure (4):	Adper Easy One self-etch adhesive	43
Figure (5):	Valux Plus, microhybrid resin composite	44
Figure (6):	Tooth with two demarcating lines; blue line denotes CEJ while	
	red line denotes 7mm below CEJ	48
Figure (7):	Tooth segment after root trimming	48
Figure (8):	Two demarcating lines at the middle of the proximal surface	49
Figure (9):	Tooth segment fixed to a circular Teflon plate with a central	
	hole of 1mm diameter	50
Figure (10):	Rocket heavy: A cyanoacrylate adhesive	51
Figure (11):	19G butterfly needle penetrated the Teflon plate and the root	
	canal of the prepared tooth segment	51
Figure (12):	Tooth segment in the mold	52
Figure (13):	Embedded tooth segment	52
Figure (14):	A specially assembled grinding device used to standardize	
	dentin depth	54
Figure (15):	A specially constructed specimen holder	55
Figure (16):	Round bur mounted to the driller	55
Figure (17):	Buccal dentin surface flattened by a grinding wheel stone	56
Figure (18):	Tooth segment with ground flat buccal surface with the CEJ	
	drawn line regained to differentiate between coronal and root	
	surface dentin	56

Figure (19):	Intrapulpal pressure simulation assembly	59
Figure (20) :	T-shape connection assembly	60
Figure (21):	Adjusted Sphygnomanometer	60
Figure (22):	Polystyrene matrix surrounded the flattened dentin surface	
	fixed with modeling clay	62
Figure (23):	Restored tooth segment	62
Figure (24):	Blue phase C5 light curing unit	63
Figure (25):	LED Radiometer	64
Figure (26):	A specially constructed large incubator with a digital screen of	
	the thermostat registering the temperature	65
Figure (27):	Color-coded coronal composite build up of the specimen	66
Figure (28):	specimen after separation from the embedding	67
Figure (29):	Mold for reembedding of the specimen before sectioning	67
Figure (30):	Reembedded specimens	68
Figure (31):	Specially constructed sectioning assembly	69
Figure (32):	Rotation of the specimen 90° and sectioning completed	
	lengthwise.	70
Figure (33):	Multiple non-trimmed sticks.	71
Figure (34):	Digital caliper checking the cross sectional area of the stick	71
Figure (35):	Digital caliper checking the length of the stick.	72
Figure (36):	A specially designed attachment for microtensile bond	
	strength testing.	73
Figure (37):	A stick fixed to the attachment.	73
Figure (38):	Lloyd testing machine.	74
Figure (39):	Stick stressed in tension until failure.	74
Figure (40):	Scanning electron microscope (SEM).	76

Figure (41):	Mean microtensile bond strength values (MPa) of the Adper	
	Single Bond 2 adhesive system bonded to coronal and root	
	dentin surfaces under intrapulpal pressure simulation while	
	immersed in artificial saliva at 37°C	79
Figure (42):	Mean microtensile bond strength values (MPa) of the Clearfil	
	SE Bond adhesive system bonded to coronal and root dentin	
	surfaces under intrapulpal pressure simulation while immersed	
	in artificial saliva at 37°C.	80
Figure (43):	Mean microtensile bond strength values (MPa) of the Adper	
	Easy One adhesive system bonded to coronal and root dentin	
	surfaces under intrapulpal pressure simulation while immersed	
	in artificial saliva at 37°C.	80
Figure (44):	Mean coronal and root dentin surfaces µTBS (MPa) of the	
	three adhesive systems after intrapulpal pressure simulation	
	while immersed in artificial saliva at 37°C	82
Figure (45):	The percentage of failure mode of the Adper Single Bond 2	
	adhesive system bonded to coronal versus root dentin surfaces	
	under intrapulpal pressure simulation while immersed in	
	artificial saliva at 37°C.	84
Figure (46):	The percentage of failure mode of the Clearfil SE Bond adhesive	
	system bonded to coronal versus root dentin surfaces under	
	intrapulpal pressure simulation while immersed in artificial	
	saliva at 37°C.	86
Figure (47):	The percentage of failure mode of the Adper Easy One adhesive	
	system bonded to coronal versus root dentin surfaces under	88

	intrapulpal pressure simulation while immersed in artificial	
	saliva at 37°C.	
Figure (48):	SEM photomicrography of representative fractured specimen	
	showing type1 (adhesive failure at the dentin side)	89
Figure (49):	SEM photomicrography of representative fractured specimen	
	showing type 2 (cohesive failure at the adhesive layer)	89
Figure (50):	SEM photomicrography of representative fractured specimen	
	showing type 3 [mixed failure, adhesive at the dentin side	
	(AD) and cohesive at the adhesive layer (CA)]	89
Figure (51):	SEM photomicrography of representative fractured specimen	
	showing type 4 [mixed failure, adhesive at the dentin side	
	(AD), cohesive at the adhesive layer (CA) and cohesive in	
	resin composite (CC)]	89
Figure (52):	SEM photomicrography of representative fractured specimen	
	showing type 1 (adhesive at the dentin side)	90
Figure (53):	SEM photomicrography of representative fractured specimen	
	showing type 2 (cohesive failure at the adhesive layer)	90
Figure (54):	SEM photomicrography of representative fractured specimen	
	showing type 4 [mixed failure, adhesive at the dentin side	
	(AD), cohesive at the adhesive layer (CA) and cohesive in	
	resin composite (CC)].	90
Figure (55):	SEM photomicrography of representative fractured specimen	
	showing type 1 (adhesive at the dentin side)	91
Figure (56):	SEM photomicrography of representative fractured specimen	
	showing type 2 (cohesive failure at the adhesive layer)	91
Figure (57):	SEM photomicrography of representative fractured specimen	91

	showing type 3 [mixed failure, adhesive at the dentin side	
	(AD) and cohesive at the adhesive layer (CA)]	
Figure (58):	SEM photomicrography of representative fractured specimen	
	showing type 4 [mixed failure, adhesive at the dentin side	
	(AD), cohesive at the adhesive layer (CA) and cohesive in	
	resin composite (CC)].	91
Figure (59):	SEM photomicrography of representative fractured specimen	
	showing type 1 (adhesive at the dentin side)	92
Figure (60):	SEM photomicrography of representative fractured specimen	
	showing type 2 (cohesive failure at the adhesive layer)	92
Figure (61):	SEM photomicrography of representative fractured specimen	
	showing type 3 [mixed failure, adhesive at the dentin side	
	(AD) and cohesive at the adhesive layer (CA)]	92
Figure (62):	SEM photomicrography of representative fractured specimen	
	showing type 4 [mixed failure, adhesive at the dentin side	
	(AD), cohesive at the adhesive layer (CA) and cohesive in	
	resin composite (CC)].	92
Figure (63):	SEM photomicrography of representative fractured specimen	
	showing type 1 (adhesive at the dentin side)	93
Figure (64):	SEM photomicrography of representative fractured specimen	
	showing type 2 (cohesive failure at the adhesive layer)	93
Figure (65):	SEM photomicrography of representative fractured specimen	
	showing type 3 [mixed failure, adhesive at the dentin side	
	(AD) and cohesive at the adhesive layer (CA)]	93
Figure (66):	SEM photomicrography of representative fractured specimen	
	showing type 4 [mixed failure, adhesive at the dentin side	
	(AD), cohesive at the adhesive layer (CA) and cohesive in	
Figure (47).	resin composite (CC)].	04
Figure (67):	SEM photomicrography of representative fractured specimen	94

	showing type 1 (adhesive at the dentin side)	
Figure (68):	SEM photomicrography of representative fractured specimen	
	showing type 2 (cohesive failure at the adhesive layer).	
	Arrows denoting bubbles.	94
Figure (69):	SEM photomicrography of representative fractured specimen	
	showing type 3 [mixed failure, adhesive at the dentin side	
	(AD) and cohesive at the adhesive layer (CA)]	94
Figure (70):	SEM photomicrography of representative fractured specimen	
	showing type 4 [mixed failure, adhesive at the dentin side	
	(AD), cohesive at the adhesive layer (CA) and cohesive in	
	resin composite (CC)].	94

INTRODUCTION

The increasing demand for esthetic restorative treatments and the ubiquity of preventive approaches have led to a renovation in practice of operative dentistry. This transformation has resulted in a more conservative approach in tooth preparation. Bonding techniques allow such conservative tooth preparations through less reliance on macro mechanical retention and less removal of unsupported enamel (**Robenson et al., 2006**).

A number of new adhesive systems have been developed in an attempt to reduce the steps and simplify the clinical bonding procedures (Haller, 2000). In addition, these systems developed to overcome some of the previously reported limitations encountered with the earlier multistep etch-and-rinse versions of adhesive systems (Carvalho et al., 2005). However, one of the challenges that facing the adhesive systems' manufacturers has been, and still remains, the development of adhesive agents that equally adhere to different tooth substrates.

Dentin poses greater obstacles to adhesive bonding than does enamel, because dentin is regarded as a biologic composite of apatite filler crystallites in a collagen matrix with a fluid-filled tubular structure connecting the pulp to the dentino-enamel junction. Bonding to this heterogeneous and intrinsically wet substrate is more difficult to achieve, therefore the development of the newest adhesive generations were based on the dentin substrate (Camborgi et al., 2007).

As a means to obtain information about the ability of a material to bond successfully, the use of coronal dentin is widely used as adequate substrate of bonding. However, in the clinical situation, bonding is performed on dentin which is located at various sites. The recent developments in preventive dentistry and periodontology significantly