LONG-TERM EEG MONITORING IN ACQUIRED EPILEPTIC DYSPHASIA

Thesis

Submitted for Complete Fulfillment of The Doctorate Degree (M.D.) in Clinical Neurophsiology

By

Mye Ali Farag Basheer
(M.B., B.Ch.; M.Sc., Cairo University)

Supervised by

Prof. Dr. Ann Ali Abdel Kader

Professor of Clinical Neurophysiology, Special Medicine Department, Faculty of Medicine, Cairo University

Dr. Hala Rashad El-Habashy

Assistant Professor of Clinical Neurophysiology, Special Medicine Department, Faculty of Medicine, Cairo University

Dr. Mohamed Nasreldin Sadek

Assistant Professor of Psychiatry Faculty of Medicine, Cairo University

> Faculty of Medicine, Cairo University 2010

- :

ACKNOWLEDGEMENT

Prof. Ann Ali, Professor of Clinical Neurophysiology, Faculty of Medicine, Cairo University, I cannot find the very words describing what in my mind and heart for you. So very formally, I faithfully would like to express my deepest gratitude to you, for giving me of your valuable time, advice, your endless outstanding support and infinite help throughout this work and my life too.

Prof. Hala El-Habashy, Assistant professor of Clinical Neurophysiology, Faculty of Medicine, Cairo University, again, my profound gratitude goes to you, for your valuable criticism, generous advice and sincere effort that was essential to accomplish this work.

Prof. Mohammad Nasreldin, Assistant professor of Psychiatry, Faculty of Medicine, Cairo University, I am deeply indebted to you, for your support, meticulous hints, valuable criticism, unlimited guidance and encouragement throughout this work.

Prof. Seyam Saeed, may God rest his soul in peace. I cannot grief him enough as I still feel he is living in all of us, his students. We all miss him.

All stuff members and colleagues in the Clinical Neurophysiology unit, I must thank all of you, for your support and sincere help during performing this work.

Technicians and workers of the Clinical Neurophysiology unit, you all deserve to be thanked, for your generous support.

I would like to extend my acknowledgement to Dr. Dalia Ibrahim, "Ebni society" board and stuff, Mrs. Amal Mohammad and Mr. Yasser Abdo for their great professional help during this study.

The children of the study, I hope to see all of you in the future as good as I ever imagined, and the guardians, you all must be saluted for your patience, thanked for inviting me into your families.

My family and friends, I love you all. Your love is my shelter and my inspiration.

This effort is dedicated to

My Family

To whom I am originally, endlessly and proudly affiliated

CONTENTS

List of abbreviations(II)
List of tables(VII)
List of figures(VIII)
Introduction and aim of work(1)
Review of literature
• Chapter (1): Language acquisition and its disorders(11)
• Chapter (2): Acquired epileptic dysphasia(45)
• Chapter (3): Pervasive developmental disorders(65)
• Chapter (4): Neurophysiology of acquired epileptic dysphasia(125)
Subjects and methods(158)
Results(172)
Selected Cases: EEG traces(t1-t22)
Discussion(196)
Summary, conclusion and recommendations(211)
References(213)
Appendix
Arabic summary

LIST OF ABBREVIATIONS

ADEM	:	Acute Disseminated EncephaloMyelitis
5-HT	:	Serotonin
ABR		Auditory Brainstem Response
AD	:	Autistic Disorder
ADHD	:	Attention Deficit Hyperactivity Disorder
AEA	:	Acquired Epileptic Aphasia
AEDS	:	Anti-Epileptic Drugs
AMT	:	Alpha-[11 C]Methyl-L-Tryptophan
ANOVA		ANalysis Of Variance
AR		Autistic Regression
AS		Asperger Syndrome
ASD		Autism Spectrum Disorders
BAEPs		Brainstem Auditory Evoked Potentials
BCEOP		Benign Childhood Epilepsy with Occipital Paroxysms
BCSSS	:	Benign Childhood Seizure Susceptibility Syndromes
BDNF		Brain Derived Neurotrophic Factor
BECTS		Benign Childhood Epilepsy with Centro-Temporal Spikes
BHTs	:	Behavioral Hearing Tests
BRE		Benign Rolandic Epilepsy
CAP	:	Cyclic Alternating Pattern
CAPD	:	Central Auditory Processing Disorder
CARS		Child Autism Rating Scale
CBC		Complete Blood Picture
CBCL	:	Child Behaviour CheckList
CBD	:	CorticoBasal Degeneration
CCTV-EEG	:	Closed-Circuit Television Videotaping and digitized EEG telemetry
CDKL5	:	Cyclin Dependent Kinase-Like 5
CFT	:	beta-Carbomethoxy-3 beta-4-Fluorophenyl Tropane
CHAT		CHecklist for Autism in Toddlers
CNS		Central Nervous System
CSF		Cerebro-Spinal Fluid
CSWS	•	Continuous Spikes-Waves during slow Sleep
CT	:	Computed Tomography
CTS	:	Centro-Temporal Spikes
dB	:	deci-Bell
DSM-IV		The Diagnostic and Statistical Manual of Mental Disorders, 4 th Edition
DWI		Diffusion-Weighted Imaging
EA	:	Epileptiform Activity
EEG	:	Electroencephalogram
ELP4	:	Elongator Protein complex 4
EME	:	Early Myoclonic Encephalopathy
EMFs	:	Evoked Magnetic Fields
EPC	:	Epilepsia Partialis Continua
ERF	:	Event Related Field
EROs	:	Event Related Oscillations
L		

ERPs	: Event-Related brain Potentials
ESES	: Electrical Status Epilepticus with Sleep
FDG	: 18-Fluoro-2-DeoxyGlucose
FISH	: Fluorescence In Situ Hybridization
FMAER	: Frequency-Modulated Auditory-Evoked Response
FMR1	Fragile-site Mental Retardation 1 gene
fMRI	: functional MRI
FOS	: Fixation Off Sensitivity
FXS	: Fragile X Syndrome
GEFS+	: Generalized Epilepsy with Febrile Seizures "plus"
GER	: GastroEsophageal Reflux
GSES	: Giant Somatosensory Evoked Spikes
HFA	: High Functioning Autism
HIV	: Human Immunodeficiency Virus
HMPAO	: HexaMethylPropyleneAmine Oxide
HPA	: Hypothalamic-Pituitary- Adrenal
ICOE-G	: Idiopathic Childhood Occipital Epilepsy of Gastaut
IEP	: Interictal eEpileptiform Discharges
IPL	: InterPeak latencies
IQ	: Intelligence Quotient
LFA	: Low Functioning Autism
LGS	: Lennox-Gastaut Syndrome
LKS	: Landau Kleffner Syndrome
LTG	: LaMoTrigine
MAE	: Myoclonic-Astatic Epilepsy
MBDs	: Methyl-CpG-Binding Domain proteins
MBP	: Myelin Basic Protein
MCA	: Middle Cerebral Artery
McDD	: Multiple complex Developmental Disorder
MDI	: MultiDimensionally Impaired disorder
MECP2	: MEthyl-CpG binding Protein-2
MEG	: MagnetoEncephaloGraphy
MMF	: Magnetic Mismatch Field
MMN	: MisMatch Negativity
MMR	: Measles-Mumps-Rubella
MRI	: Magnetic Resonance Imaging
MRS	: Magnetic Resonanse Spectroscopy
MS	: Multiple Sclerosis
MSNE	: Myoclonic Status in Nonprogressive Encephalopaties
NCG	: Normal Control Group
NGF NREM	: Nerve Growth Factor
	: Non-Rapid Eye Movement
OCD PDA	: Obsessive-Compulsive Disorder
	: Pathological Demand Avoidance
PDD-NOS PDDs	: Pervasive Developmental Disorder – Not Otherwise Specified
PET	: Pervasive Developmental Disorders
rei	: Positron Emission Tomography

PLEDs	: Periodic Lateralized Epileptiform Discharges	
PS	: Panayiotopoulos Syndrome	
PSG	: PolySomnoGraphy	
PWI	: Perfusion Weighted Imaging	
QEEG	: Quantified EEG	
rCBF	: regional Cerebral Blood Flow	
RD	: Reading Disability	
RE	: Rolandic Epilepsy	
REM	: Rapid Eye Movement	
RS	: Rett Syndrome	
SB	: Suppression Burst	
SD	: Standard Deviation	
SD	: Sudden Death	
SLI	: Specific Language Impairment	
SNRIs	: Nonselective Serotonin Reuptake Inhibitors	
SPECT	: Single-Photon Emission Computed Tomography	
SPGI	: Superior tip of the Precentral Gyrus of the Insula	
SPL	: Sound Pressure Level	
SPS	: Semantic-Pragmatic Syndrome	
SQ	: Social Quotient	
SSD	: Speech Sound Disorder	
SSR	: Steady-State Responses	
SSRIs	: Selective Serotonin Reuptake Inhibitors	
STG	: Superior Temporal Gyrus	
STK9	Serine Threonine Kinase 9	
STS	: Superior Temporal Sulcus	
SW	: Slow Wave	
SW	: Spike-Wave	
SWS	: Slow Wave Sleep	
TBI	: Traumatic Brain Injury	
TORCH	: TOxoplasmosis, Rubella, Cytomegalo virus, Herpes simplex virus	
USA	: The United States of America	
VABS	: Vineland Adaptive Behaviour Scales	
VNS	: Vagal Nerve Stimulator	

LIST of TABLES

No.	Title	Page
1	(a,b): Comparative features of different benign partial	58-59
	epilepsies of childhood	
2	(a-d): Structural brain imaging studies in ASD	74-75
3	Functional brain imaging studies during rest in autism patients	85
4	Table (a,b): Revised diagnostic criteria for classical and	92-93
	variant RS	
5	DSM-IV-TR for autistic disorder and Asperger syndrome	110
6	Total number of subjects and mean age (and standard	172
	deviation) in patients and control groups	
7	Comparison of clinical history among patients group and NCG	176
8	(a-c) Comparison of BAEPs values among patients and NCG	178-180
9	Comparison of P300 response values among patients and	180
	NCG	
10	Comparison of VABS values among patients and NCG	181
11	Comparison of CBCL values among patients and NCG	183
12	(a-b) Comparison of clinical history among patients groups	184-185
13	Comparison of VABS values among patients groups	187
14	Comparison of CBCL values among patients groups	187
15	Comparison of CARS results among patients groups	189

LIST of FIGURES

No.	Title	Page
1	A preoperative functional MRI performed with language task shows	34
	Broca's and Wernicke's areas	
2	Functional MRI is used to study activity of the relation of the	86
	amygdala to the fusiform face area and superior temporal sulcus	
	(STS), which are responsible for face perception	
3	Diagram of pervasive developmental disorder categories	124
4	male/female ratio in patients group	173
5	male/female ratio in NCG	173
6	male/female ratio in group I	174
7	male/female ratio in group II	175
8	Comparison of perinatal problems among patients and NCG	177
9	Comparison of P300 amplitude among patients and NCG	181
10	Comparison of the social quotient among patients and control	182
	groups	
11	Comparison of the mental age among patients and control groups	182
12	Comparison of CBCL t-total value among patients and control	183
	groups	
13	Comparison of mean relative illness duration among patients of	185
	group I and group II	
14	Comparison of history of AED intake among patients of group I and	186
	group II	
15	Comparison of neurological deficits among patients of group I and	186
	group II	
16	Comparison of CBCL t-total mean value among patients groups	188
17	Comparison of CBCL t-externalizing mean value among patients	188
	groups	
18	Comparison of CBCL t-internalizing mean value among patients	189
	groups	
19	Correlation between social quotient and EEG wake background	191
	disorganization	1.5
20	Correlation between social quotient and EEG sleep background	192
	disorganization	

ABSTRACT

INTRODUCTION: Dysphasia is a language disorder in which there is an impairment of speech and of comprehension of speech. Acquired childhood aphasia is rare but has important conceptual implications for developmental neuropsychology. AIM: Studying long term monitoring EEG in patients with acquired dysphasia, whether giving history of epilepsy or not, to stand on the different EEG pictures related to it, identify their causes and calculate their ratios. SUBJECTS and METHODS: 40 patients, males and females, with age ranging 3-16 years, giving history of acquired language disorder were studied for 1. Long-term, sleep and wake EEG, 2. Psychometric assessment; Childhood behavior checklist (CBCL), Childhood autistic assessment scale (CARS) and Vineland Adaptive Behaviour Scales (VABS), 3. Auditory evoked potential studies: early (BAEPs) and -whenever possible-late (P300). In addition, 20 normal age and sex matched subjects were examined for; 1. Auditory evoked potential studies, 2. CBCL and VABS. RESULTS: The patient group (24 males and 16 females), were divided to group I giving history of epilepsy or having epileptiform EEG and group II negative for either. Group I showed heterogeneous EEG pictures, and heterogeneous diagnoses, yet 7 patients showed sleep induced potentiation for epileptiform changes. Group II patients chiefly had autism spectrum disorder. Statistical comparisons and correlations were performed for patient groups and controls. Conclusion: The boundaries between epileptiform EEG, epilepsy and epileptic encephalopathy are clear by definition, but they usually merge in clinical cases. The onset of epilepsy in brain systems involved in social communication and/or recognition of emotions- during the brain developmental period- can initiate speech and language development impairment. Also, it can occasionally be the cause of -or may aggravate preexisting behavioural disturbances.

Keywords:

Long-term EEG monitoring Acquired epileptic dysphasia Neurophysiology Neuropsychology

INTRODUCTION AND AIM OF WORK

"SPEAK! THAT I MAY SEE YOU"
SOCRATES

Definition of dysphasia:

Dysphasia is a language disorder in which there is impairment of speech and of comprehension of speech. It is caused by brain damage, usually in the left side of the brain which is responsible for language and communication. The word comes from the <u>Greek dys-</u> (impairment) and *phasia* (speech). The term dysphasia has been eclipsed by the modern usage of the term "aphasia" particularly in the field of speech/language pathology so as not to confuse with the swallowing disorder "dysphagia". Aphasia literally means no speech. But the speech impairment in aphasia could range from complete absence of speech to difficulty in naming a few objects. (http://en.wikipedia.org/wiki/Dysphasia)

Acquired childhood aphasia is rare but has important conceptual implications for developmental neuropsychology (*Van Hout, 1997*).

Defferential diagnosis of Acquired Epileptic Aphasia (AEA):

- Acute Disseminated Encephalomyelitis

Acute disseminated encephalomyelitis (ADEM) is a monophasic, demyelinating disease of the central nervous system that predominately affects prepubertal children. It is typically characterized by an abrupt onset of neurologic symptoms preceded by an infection or recent immunization (Harris and Lee, 2007).

- Benign Childhood Epilepsy

Benign childhood epilepsy with centro-temporal spikes (BECTS) is the most common form of focal idiopathic epilepsy in childhood, showing no demonstrable anatomical lesions. In general the prognosis is good and the seizures disappear by 15 years of age, with normalization of the electroencephalogram (EEG) (Fonseca et al, 2007).

- Cardioembolic Stroke

-Epilepsy in Children with Mental Retardation

-Epileptic and Epileptiform Encephalopathies

Epileptic encephalopathies are progressive clinical and electroencephalographic syndromes where deterioration is thought to be caused by frequent seizures and abundant EEG epileptiform activity (*Tharp, 2004*).

- Head Injury

- Low-Grade Astrocytoma

Low-grade astrocytomas are a heterogeneous group of intrinsic central nervous system (CNS) neoplasms that share certain similarities in their clinical presentation, radiologic appearance, prognosis, and treatment (Jallo and Benardete, 2007).

- Mental Retardation

- Neurocysticercosis

The most common helminthic disease of the nervous system and currently represents a major public health problem in developing countries of Latin America, Asia, and Africa, as well as in industrialized nations with a high immigration rate of people from endemic areas (*Del Brutto*, 2005)

Other Problems to be Considered:

- -Acquired expressive epileptic aphasia
- -Adrenoleukodystrophy
- -Childhood disintegrative disorder
- -Developmental dysphasia or developmental expressive language disorder
- -Disintegrative epileptiform disorder
- Electrical status epilepticus with sleep (ESES) (De Menezes, 2010).

Landau Kleffner Syndrome

LKS typically develops in healthy children who acutely or progressively lose receptive and expressive language ability coincident with the appearance of paroxysmal EEG changes. In 1957, Landau and Kleffner initially described acquired epileptic aphasia (AEA) and subsequently reluctantly agreed to the attachment of their names to the syndrome (*De Menezes*, 2010).

Landau-Kleffner syndrome is characterized by acquired aphasia and paroxysmal, sleep-activated EEG paroxysms predominating over the temporal or parieto-occipital regions. Secondary symptoms include psychomotor or behavioral disturbances and epilepsy with a favorable outcome for seizure control. The prevalence is unclear. A male predominance exists, with an approximately 2:1 ratio. This regressive syndrome affects children after having achieved early developmental milestones, with 3–9 years being the usual age of presentation (*Pearl et al., 2001*)

3