Evaluation of Left Ventricular Systolic and Diastolic Function in Patients with Mitral Stenosis by Different Tissue Doppler Techniques

Thesis Submitted for the fulfillment of the master degree in cardiology

By
Dina Omar Ismail Mohamed

Under supervision of **Prof. Dr. Adel Zaki**

A.Prof. Dr. Amr Hassan

Faculty of Medicine Cairo University 2010

To My Dad, The Best Father Ever

Acknowledgement

First and foremost, I thank "Allah" the most kind and merciful.

With great pleasure, I wish to express my deepest appreciation and great thanks to **Prof. Doctor Adel M. Zaki**, Professor of Cardiology, Faculty of Medicine, Cairo University, for sincere guidance, and continuous encouragement throughout this work.

With considerable appreciation, I express my sincere respect to **Doctor Amr M. Hassan**, Assistant Professor of Cardiology, Faculty of Medicine, and Cairo University for his valuable guidance, and his active support in performing this work.

I would like to express my great thanks to my dear friend Mrs. Assia Ghazieri, Chef of diagnostic center in Beirut Governmental University Hospital for her help and her great effort in performing echocardiographic studies for most of our subjects.

I also would like to express my deepest gratitude for all members of cardiology department in Beirut Governmental University Hospital for their valuable supervision and support.

Last but not least, I would like to express my deep thanks to my dear family and friends who helped me to finish this work.

Abstract

Evaluation of left ventricular function in patients with pure mitral stenosis by different tissue Doppler techniques

Pure mitral stenosis (MS) affects left ventricular function as a result of myocardial and mechanical factors, we examined the left ventricular (LV) long axis function of the patient with pure mitral stenosis and normal global systolic function as assessed by ejection fraction (EF%).

This study was designed to:- evaluate patients with MS by means of Tissue Doppler imaging (TDI) in patients with MS by assessing Myocardial Performance Index (MPI) and myocardial velocity during systole, early and late diastole. Also to evaluate whether LV dysfunction affects and correlates with pulmonary artery pressure (PAP).

A total of 40 patients with estabilished diagnosis of MS (mean age: 43 ±10 years) and 40 healthy individuals (mean age: 29±7 years) were included in this study. Echocardiography equipped with TDI function was performed on each participant. The mitral valve area (MVA) and PAP were measured. Myocardial velocities were recorded at 4 different sites (septum, lateral, anterior and inferior) of the left ventricle by TDI. The positive systolic velocity when the mitral ring moved towards the cardiac apex and two negative diastolic velocities when the mitral annulus moved towards the base away from the apex were measured. TDI was used to evaluate iso-volumetric contraction time (IVC), iso-volumetric relaxation time (IRT) and ejection time (ET) at two different sites of the mitral annulus (lateral and septum). The MPI was calculated with the formula [(ICT+IRT) / (ET)], the mean MPI was found by dividing the sum of the MPI values into two. Patients with pure MS were compared with healthy participants, and the relationship of TDI variables with (MVA) and PAP were evaluated.

The psitive systolic myocardial velocities of the left ventricle indicating LV systolic function were found to be significantly lower in patients with pure MS and MPI indicating LV systolic and diastolic function to be sugnificantly higher in patients with pure MS. A significant positive correlation could be established between MVA and systolic myocardial velocities (septum, lateral, inferior, anterior) (r=0.815, p=<0.01; r=0.821, p<0.01; r=0.815, p<0.01; r=0.676, p<0.01; respectively) whereas a significant negative correlation (r=-0.840, p<0.01) was established between MVA and MPI as well as between PAP and myocardial systolic velocities (septum, lateral, inferior, anterior) (r=0.754, p<0.01; r=-0.690, p<0.01; r=-0.742, p<0.01; r=-0.514. p<0.01; respectively), PAP was also found to be singificantly positively correlate with MPI (r=0.855, p=0.01).

This study shows that pure MS affects LV performance on long axis. The results indicate that the decrease in LV performance is caused by both functional and myocardial factors.

Key words: Mitral Stenosis, Tissue Doppler Imaging, Left Ventricular Function, Myocardial Performance Index.

List of Contents

Title		Page
	 ACKNOWLEDGEMENT List of Content List of Tables List of Figures List of Abbreviations Chapter ONE:- Introduction and Aim of the work 	I IV V VIII X
	- Chapter TWO:- Povious of literature [1]	4
	Review of literature [1]Mitral stenosis:-	4
I.	Definition and Etiology of mitral stenosis	4
II.	Anatomy of mitral valve apparatus	7
III.	Pathology of mitral stenosis	13
IV. Pathophysiology of mitral stenosis		16
V.		
	- Role of echocardiographic studies in diagnosis and	26
	assessment of severity of rheumatic mitral stenosis	
	- Left ventricular function in MS	30
	- Suggested mechanisms of left ventricular dysfunction in pure	32
_	MS:-	
I.	The obstruction theory	33
II.	The MVAP immobilization theory	39
III. The myocardial insufficiency theory		42 46
	IV. The increased afterload theory	
	V. Theory of chamber disuse hypofunction	
VI.		48
VII.	Neuro-humoral effect and abnormal calcium regulation	50
VIII.	Co-existing diseases	53

	- Chapter THREE:-	
	- Review of literature [2]	56
	- Tissue Doppler	
I.	Introduction	56
II.	Historical perspective	56
III.	Definition	57
IV.	Technical principles of tissue Doppler imaging	58
V.	Modalities of TDI	59
VI.	Tissue Doppler imaging display	61
VII.	TDI in normal subjects	66
VIII.	Limitation of TDI	77
IX.	New advance in TDI	79
	- Chapter FOUR:-	
	- Subjects and Methods	
	- Criteria of patient selection	83
	- Clinical assessment	84
	- Transthoracic echocardiographic examination	85
	- Tissue Doppler examination	86
	- Statistical analysis	89
	- Chapter FIVE:-	
	- Results	
	- Baseline clinical character	90
	- Conventional echocardiographic parameters in control and	93
	MS group	
	- Conventional echocardiogaphic parameters in control and MS	95
	subgroups	
	- Tissue Doppler parameters in control and study group	96
	- MPI in all study subjects	99
	- MVA in all study subjects	101
	- PAP in all study subjects	103
	- EF% in all study subjects	105

- E/E [/] in all study subjects	107
- <u>Chapter SIX:-</u> - <u>Discussion</u>	108
Chapter SEVEN:-Summary and Conclusion	117
Chapter EIGHT:-Limitation of the study	119
- <u>Master tables</u>	121
- <u>References</u>	129

List of Tables

No. of table	Title	Page
Table (1)	- The main hemodynamic alterations in MS	19
Table (2)	- Current recommendations for surgical therapy	23
Table (3)	- Severity of mitral stenosis	27
Table (4)	 Comparison between advantage and disadvantages of pulsed and colored TDI 	65
Table (5)	- Basal and mid wall pulsed wave tissue Doppler myocardial velocities	74
Table (6)	 Conventional echocardiographic parameters of the control group and MS group shown in table 	94
Table (7)	 Conventional echocardiographic parameters of the control and study subgroups shown in table 	95
Table (8)	- Tissue Doppler imaging parameters of the control and study groups shown in table	98
Table (9)	 Conventional echocardiographic parameter in control subjects [1] Conventional echocardiographic parameter in control subjects 	121
Table (10)	- Conventional echocardiographic parameter in control subjects [2] - Tissue Doppler parameters in control subjects [1]	122
Table (11)	- Tissue Doppler parameters in control subjects [2]	123
Table (12)	- Conventional Echocardiographic parameter for control [1]	124
Table (13)	- Conventional Echocardiographic parameter for control [2]	125
Table (14)	- Tissue Doppler in MS patient [1]	126
Table (15)	- Tissue Doppler in MS patient [2]	127
Table (16)		128

List of Figures

No. of figure	Title	Page
Figure (1)	- Shows worldwide prevalence of RHD	5
Figure (2)	- Nomenclature of the mitral valve	8
Figure (3)	- Pathological specimen of the mitral valve in mitral stenosis	14
Figure (4)	- Mitral valve in rheumatic mitral stenosis	16
Figure (5)	 Treatment of mitral stenosis using the finger fracture closed mitral comissurotomy technique 	21
Figure (6)	- Shortening of the posterior wall of the left ventricle in a heart specimen with mitral stenosis	39
Figure (7)	- Principles of tissue Doppler imaging	59
rigure (7)	- Doppler velocity curve in a healthy volunteer	3)
Figure (8)	- The tissue Doppler image, obtained from the parasternal long-	60
Figure (9)	axis view	62
Figure (10)	- Tissue Doppler time intervals and velocities measured from the lateral mitral annulus	64
-g (,)	 Shows myocardial systolic and diastolic velocities determined by TDE 	
Figure (11)	- Sex distribution in control group	88
Figure (12)	- Mitral regurgitation in control group	90
Figure (13)	- Aortic regurgitation in control group	91
Figure (14)	- Sex distribution in MS group	91
Figure (15)	- Mitral Regurgitation in MS group	91
	- Aortic Regurgitation in MS group	
Figure (16)	- LVEF in control group and MS group	92
Figure (17)	- Conventional Echocardiographic parameters of control, mild	92
Figure (18)	and mod/severe MS	93
Figure (19)	- Tissue Doppler parameters of control, mild and mod/severe MS	96

Figure (20)	- Correlation between MPI and PAP	97
	- Correlation between MPI and MVA	
Figure (21)	- Shows correlation between MPI and S velocities at different sites of mitral annulus	99
Figure (22)	- Correlation between MVA and PAP	99
Figure (23)	- Shows correlation between MVA and S velocities at different sites of mitral annulus	100
Figure (24)	- Shows correlation between MVA and S velocities at different sites of mitral annulus	101
Figure (25)	- Correlation between EF% and MVA	102
Figure (26)	- Shows correlation between EF% and S velocities at different sites of mitral annulus	104
Figure (27)	- E/E [/] in Control group and MS group	105
Figure (28)		106
Figure (29)		107

List of Abbreviations

ACEI	Angiotensin Converting Enzyme Inhibitor	
AF	Atrial fibrillation	
AHA/ACC	American Heart Association/American collage of cardiology	
ANOVA	Analysis Of Variance	
AOVD	Aortic valve disease	
AR	Aortic Regurgitation	
ASD	Atrial Septal Defect	
BMV	Balloon Mitral Valvuloplasty	
BNP	B-Natriuretic peptide	
CAD	Coronary Artery Disease	
COP	Cardiac Output	
CT	CT Computed tomography	
DSE	Dobutamine stress echocardiography	
DT	T Deceleration Time of early left ventricular filling	
DTI	DTI Doppler Tissue Imaging	
E/A	Peak Early Diastolic Flow Velocity To Late Diastolic Flow Velocity	
\mathbf{E}/\mathbf{E}'	Peak Early Diastolic Flow Velocity To Peak Mitral Annulus Velocity	
ECG	Electrocardiogram	
EF	Ejection Fraction	
ESS	End systolic wall stress	
ESV	End systolic volume	
ET	Ejection time	

HF	Heart failure	
HR	Heart rate	
ICT	Isovolumetric contraction time	
IEC	Infective endocarditis	
IEM	Inborn errors of metabolism	
IRT	Isovolumetric relaxation time	
IVCT	Isovolumetric contraction time	
IVRT	Isovolumetric relaxation time	
IVS	Interventricular setum	
LA	Left atrium	
LAD	Left atrial diameter	
LAF	Long axis function	
LQTS	Long QT syndromes	
LV	Left Ventricle	
LVEDD	Left ventricular end-diastolic diameter	
LVEDP	Left ventricular end-diastolic pressure	
LVEDV	Left ventricular end-diastolic volume	
LVF	LVF Left ventricular function	
LVIO	O Left ventricular inflow obstruction	
MPI	Myocardial performance index	
MR	Mitral regurgitation	
MS	Mitral stenosis	
MV	Mitral valve	

MVA	Mitral valve area	
MVAP	Mitral valve apparatus	
MVG	Myocardial velocity gradient	
PAP	Pulmonary artery pressure	
PBMV	Percutaneous balloon mitral valvuloplasty	
РНТ	Pulmonary hypertension	
PISA	Proximal isovelocity surface area	
RAVD	Radiation-associated valvular disease	
RF	Radio frequency	
RHD	Rheumatic heart disease	
RV	Right ventricle	
SERCA	Sarcoendoplasmic reticulum calcium ATP-ase reuptake pump	
SRI	Strain rate imaging.	
SPAP	P Systolic pulmonary artery pressure	
SV	Stroke volume	
TDE	TDE Tissue Doppler echocardiography	
TDI	TDI Tissue Doppler imaging	
TR	TR Tricuspid regurgitation	
WMA	Wall motion abnormality	

Chapter 1

Introduction & Aim of the work

Introduction and Aim of the work

Rheumatic Mitral Stenosis (MS) is frequently seen in developing countries and cause significant morbidity and mortality.

Echocardiographic studies on left ventricular function (LVF) in MS have yielded conflicting results. Despite our knowledge that myocardial function remains normal in MS, some authors have recently demonstrated abnormalities in left ventricular function (LVF). ^{2, 3}

The effect of pure MS on left ventricular function (systolic and diastolic) is a complex phenomenon. The pathophysiologic roles for mechanical and myocardial factors for impairment of ventricular performance are not yet clear. ⁴

Abnormal passive elastic properties resulting from chamber atrophy due to unloading, myocardial fibrosis, right and left ventricular interaction, or internal restrictions due to rigid mitral valve apparatus affect left ventricular function. ⁵

Tissue Doppler imaging (TDI) is a new echographic technique which allows quantitative measurements of myocardial contraction and relaxation velocities of a selected myocardial segment. ⁶

These velocities have been shown to reflect impairment of LVF. Even in the presence of preserved global systolic LVF as a measured by ejection fraction, there can be, in some patients, impairment in long-axis function as shown by TDI.