The Protective and Preventive Role of Coenzyme Q10 on the Hepatotoxicity Induced by Exposure to Radiation and Paracetamol in Experimental Animals

Thesis

Submitted to Faculty of Science
Ain Shams University
In Partial Fulfillment of Master Degree in Biochemistry

BY Mahitab Ibrahim Khalil Arafa

B.Sc. Biochemistry

Under Supervision of

Prof. Dr/ Ibrahim H. Borai

Professor of Biochemistry
Faculty of Science
Ain Shams University

Prof. Dr / Mona A. Elgawish

professor of Biochemistry National Center for Radiation Research and Technology Atomic Energy Authority

Dr/ Eman I. Kandil

Lecturer of Biochemistry Faculty of Science Ain Shams University

Faculty of Science
Ain Shams University
2010

A bstract iii

Abstract

The present study was designed to illustrate the protective and therapeutic effect of coenzyme Q10 (40 mg/kg b.wt day other day for one week) in male rats treated with repeated doses of acetaminophen (200 mg / kg b.wt) daily for 14 days and/or exposed to fractionated doses of γ -irradiation (2Gy day other day up to 6 Gy).

Such effect was evaluated by measuring the activities of the most important free radical scavengers of the antioxidant defense system including reduced glutathione (GSH) in blood, glutathione-S-transferase (GST), superoxide dismutase (SOD), nitric oxide (NO) as well as malondialdehyde content (MDA) as an indicator of lipid peroxidation, in plasma.

Hepatocellular damage was evaluated by aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH). DNA fragmentation was determined in liver tissue homogenate of all groups, besides the histological and histochemical analyses.

The results of the present study revealed that AAP and γ -irradiation (individually or cooperated) have shown increases in ALT and AST activities, as well as NO and

A bstract iv

MDA levels and decreases in antioxidants SOD and GSH in addition to GST. Moreover, γ -radiation alone or together with AAP represented some increase in LDH activity, while a reduction in LDH activity was noticed with AAP alone. DNA fragmentation showed mild increase with AAP and γ -radiation (alone or combined), the histological and histochemical analyses confirmed the biochemical results.

Pre and post treatments with CoQ10 ameliorated most of the investigated biochemical parameters and showed development in liver structure and even normal appearance of liver tissue sections histologicaly.

list of contents

Contents	Page
Acknowledgement	i
Abstract	iii
List of abbreviations	V
List of figures	viii
List of tables	xii
Introduction	xiii
Aim of the work	xvi
1. Review of literature	1
1- Liver and its function	2
2- Drug toxicity	4
Acetaminophen (paracetamol, AAP)	5
a- AAP - induced toxicity occurs by 2 phases	7
b- Metabolic activation of AAP	7
c- Nitrotyrosine and AAP toxicity	10
d- Oxidative stress induced by AAP	11
e- Mitochondrial dysfunction	14
3- Effect of Ionizing Radiation	16
a- Biological effects of radiation exposure	18
4- Coenzyme Q10 (CoQ10)	21
a- Chemical structure	21
b- Synthesis	22
c- CoQ10 deficiency	24
d- Pharmacokinetics	26
e- Absorption	26
f-Distribution	27
g-Metabolism and Excretion	27

h-Coenzyme Q10 functions	28
i-Mechanism of Action	30
-Electron Transport Chain to Produce ATP	30
-Antioxidant	32
-Membrane Stabilization and Fluidity	34
j-The Activities of Coenzyme Q10 on Immune Response	35
k-Side-effects	36
2. Materials and Methods	38
1-Materials	38
a- Experimental Animals	38
b- Compound used	38
c- Gamma radiation	39
d- Coenzyme Q10	39
e- Study design	40
f- Collection and sampling of blood and some organs	41
2- Methods	42
2-a. Blood Plasma	42
-Determination of AST activity	42
-Determination of ALT activity	45
-Determination of LDH activity	47
-Determination of SOD activity	51
-Determination of GST activity	53
-Determination of GSH content	55
-Determination of lipid peroxidation (MDA)level	57
-Determination of NO level	58
2-b. Liver Homogenate	62
-Determination of DNA fragmentation in liver tissue.	62
2- c. Histological and histochemical studies	64
3- Statistical Analysis of Data	65
3. Results	66
4. Discussion	134
Summary and Conclusion	164
References	171
Arabic summary	
Arabic abstract	

LIST OF ABBREVIATIONS

AAP	Acetaminophen(paracetamol)
ADP	Adinosin diphosphate
AIDS	Acquired immune deficiency disease
ALT	Alanine transaminase
AST	Aspartate transaminase
As	Absorbance of the standard sample
At	Absorbance of the test sample
ATP	Adinosin tri-phosphate
b.Wt.	Body weight
Ca ⁺²	Calcium ion
CDNB	1-chloro-2,4dinitrobenzen
CoQ10	Coenzyme Q10 (Ubiquinone)
CoQ10H	Semiquinone (ubisemiquinone)
CoQ10H2	Ubiquinol
CuZnSOD	Copper zinc superoxide dismutase
DNA	Deoxyribonucleic acid
DNPH	Dinitrophenyl hydrazine
DSBs	Double-strand breaks
DTNB	5, 5`-dithio- bis (2-nitrobenzoic acid)
e	Electron
EDTA	Ethylene diamine tetra acetic acid
ETC	Electron transport chain
FDA	Food and Drug Administration of USA
FeSOD	Iron superoxide dismutase
GIT	Gastrointestinal tract
GSH	Reduced glutathione
GS	Glutathione synthase
GSSG	Oxidized glutathione
GST	Glutathione-S-transferase

	Gray (unit of radiation)
Gy	Gray (unit of fadiation)
\mathbf{H}^{+}	Proton
H_2O_2	Hydrogen peroxide
НС	Hyperchromatisation
HCL	Hydrochloric acid
HMG-COA	3 Hydroxy-methyl glutaryl coenzyme
IgG	Immunoglobulin G
IL-10	Interleukin 10
IL-1 β	Interleukin 1 beta.
INF-gamma	Interferon gamma
iNOS	Inducible nitric oxide synthase
I.P	Interperitonial
IR	Irradiated group
LDH	Lactate dehydrogenase
LDL	Low density lipoprotein
LP	Lipid peroxidation
MDA	Malondialdehyde
Mg^2	Magnesium ion
MnSOD	Manganese superoxide dismutase
MPT	mitochondrial permeability transition
NAD	Nicotinamide adenine dinucleotide
NADH	Nicotinamide adenine dinucleotide (reduced form)
NADPH	Nicotinamide adenine dinucleotide phosphate
NAPQI	N-acetyl-p-benzoquinone imine
NE	Nuclear enlargement
NBT	nitroblue tetrazolium
NF-κB	Nuclear factor –kappa B

NO	Nitric oxide
NOx	nitrite /nitrate
O2*-	Superoxide
OH'	Hydroxyl radical
ONOO ⁻	Peroxynitrite
O.D.	Optical density
Pi	Phosphate
RBCs	Red blood corpuscles
RILD	Radiation-induced-liver-disease
RNA	Ribonucleic acid
ROS	Reactive oxygen species
r.p.m	Rotation per minute
-SH	Sulfhydryl group
SOD	Superoxide dismutase
SSBs	Single strand breaks
TBA	Thiobarbituric acid
TCA	Trichloroacetic acid
TNF-α	Tumor necrosis factor alpha
TQ10	Total Q10
VCL_3	Vanadium trichloride
VLDL	Very low density lipoproteins
DPN	Diphenyl amine

List of figures

Figure		Page
1	Structure of paracetamol.	5
2	Schematic representation depicting the role of metabolism in Acetaminophen toxicity.	9
3	Schematic representation depicting the role of oxidative stress in acetaminophen toxicity.	13
4	A scheme representing the role of mitochondrial permeability transition in acetaminophen toxicity.	15
5	Schematic representation of the generation of DNA damage and its incidence per 0.01Gy.	20
6	Structure of CoenzymeQ10.	21
7	Coenzyme Q10 synthesis in the body.	23
8	Schematic representation of the mitochondrial electron transport chain (ETC).	31
9	Basic mechanisms of endogenous antioxidant system	33
10	Standard curve of pyruvate.	50
11	Standard curve of Sodium nitrite.	62
12	% Difference in plasma liver enzyme AST activity of rats received AAP and/or ionizing radiation and treated with CoQ10.	70
13	% Difference in plasma liver enzyme ALT activity of rats received AAP and/or ionizing radiation and treated with CoQ10.	70
14	% Difference in plasma MDA level of rats received AAP and/or ionizing radiation and treated with CoQ10.	74
15	% Difference of plasma LDH activity of rats received AAP and/or radiation and treated with CoQ10.	74
16	% Difference in blood GSH concentration of rats received AAP and/or ionizing treated with radiation and CoQ10.	79
17	% Difference in plasma GST activity of rats received AAP and/or ionizing radiation and treated with CoQ10.	79
18	% Difference in plasma SOD activity of rats received AAP and/or ionizing radiation and treated with CoQ10.	84

1		
19	% Difference in plasma NO concentration of rats received AAP and/or ionizing radiation and treated with CoQ10.	84
20	% Difference in DNA fragmentation in tissue homogenate of rats received AAP and/or ionizing radiation and treated with CoQ10.	87
21	Photomicrograph of liver of a control rat.	90
22	Photomicrograph of liver of rat treated with AAP after 1day of final treatment.	92
23	Photomicrograph of liver of rat treated with AAP after 14 days of final treatment.	92
24	Photomicrograph of liver of rat irradiated with a fractionated dose of γ -irradiation after 1day of final treatment.	94
25	Photomicrograph of liver of rat irradiated with a fractionated dose of γ -irradiation after 14 days of final treatment.	94
26	Photomicrograph of liver of rat treated with AAP followed by fractionated dose of γ - irradiation exposure after 1day of final treatment.	96
27	Photomicrograph of liver of rat treated with AAP followed by fractionated dose of γ - irradiation exposure after 14 days of final treatment.	96
28	Photomicrograph of liver of rat treated with CoQ10 followed by AAP after 1day of final treatment.	100
29	Photomicrograph of liver of rat treated with CoQ10 followed by AAP after 14 days of final treatment.	100
30	Photomicrograph of liver of rat treated with CoQ10 followed by a fractionated dose of γ - irradiation exposure after 1day of final treatment.	102
31	Photomicrograph of liver of rat treated with CoQ10 followed by a fractionated dose of γ - irradiation exposure after 14 days of final treatment.	102
32	Photomicrograph of liver of rat treated with CoQ10 followed by AAP treatment and fractionated dose of γ -irradiation exposure after 1day of final treatment.	104
33	Photomicrograph of liver of rat treated with CoQ10 followed by AAP treatment and fractionated dose of γ -	104

	irradiation exposure after 14 days of final treatment.	
34	Photomicrograph of liver of rat treated with AAP followed by CoQ10 administration after 1 day of final treatment.	106
35	Photomicrograph of liver of rat treated with AAP followed by CoQ10 administration after 14 days of final treatment.	106
36	Photomicrograph of liver of rat exposed to fractionated dose of γ - irradiation followed by CoQ10 administration after 1day of final treatment	108
37	Photomicrograph of liver of rat exposed to fractionated dose of γ - irradiation followed by CoQ10 administration after 14 days of final treatment	108
38	Photomicrograph of liver of rat treated with AAP and fractionated dose of γ - irradiation exposure followed by CoQ10 administration after 1day of final treatment	110
39	Photomicrograph of liver of rat treated with AAP and fractionated dose of γ - irradiation exposure followed by administration after 14 days of final treatment	110
40	Photomicrograph of liver of a control rat showing normal content of DNA.	113
41	Photomicrograph of liver of rat treated with AAP after1 day of final treatment represents the DNA content.	115
42	Photomicrograph of liver of rat treated with AAP after14 days of final treatment represents the DNA content.	115
43	Photomicrograph of liver of rat exposed to fractionated dose of γ- radiation after 1 day of final treatment represents the DNA content.	117
44	Photomicrograph of liver of rat exposed to fractionated dose of γ- radiation after 14 days of final treatment.	117
45	Photomicrograph of liver DNA content of rat treated with AAP followed by fractionated dose of γ- radiation exposure after 1 day of final treatment.	119
46	Photomicrograph of liver DNA content of rat treated with AAP followed by fractionated dose of γ- radiation exposure after 14 days of final treatment.	119
47	Photomicrograph of liver DNA content of rat treated with CoQ10 followed by AAP after 1day of final treatment.	123
48	Photomicrograph of liver of rat treated with CoQ10	123

	followed by AAP after 14 days of final treatment.	
49	Photomicrograph of liver of rat treated with CoQ10 followed by γ - radiation exposure after 1 day of final treatment.	125
50	Photomicrograph of liver of rat treated with CoQ10 followed by γ- radiation exposure after 14 days of final treatment.	125
51	Photomicrograph of liver of rat treated with CoQ10 followed by AAP treatment and fractionated dose of γ -radiation exposure after 1 day of final treatment	127
52	Photomicrograph of liver of rat treated with CoQ10 followed by AAP treatment and fractionated dose of γ -radiation exposure after 14 days of final treatment.	127
53	Photomicrograph of liver of rat treated with AAP followed by CoQ10 administration after 1 day of final treatment.	129
54	Photomicrograph of liver of rat treated with AAP followed by CoQ10 administration after 14 days of final treatment.	129
55	Photomicrograph of liver of rat exposed to fractionated dose of γ -radiation followed by CoQ10 administration after 1 day of final treatment.	131
56	Photomicrograph of liver of rat exposed to fractionated dose of γ - radiation followed by CoQ10 administration after 14 days of final treatment.	131
57	Photomicrograph of liver of rat treated with AAP and fractionated dose of γ - radiation exposure followed by CoQ10 administration after 1 day of final treatment.	133
58	Photomicrograph of liver of rat treated with AAP and fractionated dose of γ- radiation exposure followed by CoQ10 administration after 14 days of final treatment.	133

list of tables

Table		Page
1	Effect of CoQ10 on plasma AST (U/ml) and ALT (U/L) of male albino rat exposed to fractionated dose of gamma radiation and acetaminophen.	69
2	Effect of CoQ10 on plasma MDA (µmol/ml) and LDH (IU/L) of male albino rat exposed to fractionated dose of gamma radiation and acetaminophen.	73
3	Effect of CoQ10 on blood GSH (mg/dl) and plasma GST (mM/min/ml) of male albino rat exposed to fractionated dose of gamma radiation and acetaminophen.	78
4	Effect of CoQ10 on plasma SOD (U/ml) and NO (µmol) of male albino rat exposed to fractionated dose of gamma radiation and acetaminophen.	83
5	Effect of CoQ10 on DNA of male albino rat exposed to fractionated dose of gamma radiation and acetaminophen.	86

Acknowledgement

First and foremost thanks to *Allah*, the most merciful for guiding me through and giving me strength to complete this work.

I would like to express my deepest gratitude to *Professor Dr. Ibrahim Hassan Borai*, Professor of Biochemistry, Biochemistry Department Faculty of Science, Ain Shams University for his kind guidance, valuable advice and instructive criticism and who sacrificed a good deal of his valuable time throughout this work. Without his generous and valuable assistance, this work would lose its value. It is an honor working under his supervision.

I am greatly indebted to *Professor Dr.Mona Ahmed Elgawish*, Professor of Biochemistry, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, I'd like to express my deepest respect to her and how honored I am for just being her student, she is a kind of people, one only dreams to be like, I want to thank her for standing by me all along and being my ideal, she spent a big deal of her time with me, in spit of her busy