

Lectin and its possible role in allergic rhinitis

Thesis

Submitted for the partial fulfillment of Master Degree in Internal Medicine

By

Nada Mohamed Ahmed Noor Al-Din

M.B.B.Ch.

Under supervision of

Prof. Maged Mohammed Refaat

Professor of Allergy and Clinical Immunology Faculty of Medicine - Ain Shams University

Dr. Nermine Abd elnour Melek

Assistant professor of Allergy and Clinical Immunology Faculty of Medicine —Ain Shams University

Dr. Mariam Maged Amin

Lecturer of Allergy and Clinical Immunology Faculty of Medicine —Ain Shams University

> Faculty of Medicine Ain Shams University 2016

لكتين ودوره المحتمل في حساسية الأنف

رسالة

توطئة للحصول على درجة الماجستيرية الباطنة العامة مقدمة من

الطبيبة/ ندى محمد أحمد نور الدين

بكالوريوس الطب والجراحة العامة . جامعة عين شمس

تحت إشراف أ.د / ماجد محمد رفعت

أستاذ الحساسية والمناعة الإكلينيكية

كلية الطب-جامعة عين شمس

د / نرمين عبد النور ملك

أستاذ مساعد الحساسية والمناعة الإكلينيكية

كلية الطب-جامعة عين شمس

د / مريم ماجد أمين

مدرس الحساسية والمناعة الإكلينيكية

كلية الطب جامعة عين شمس

كليسة الطب

جامعة عين شمس

7.17

ACKNOWLED GEMENT

First of all, thanks to Allah

I would like to express and extend my deepest gratitude to Allah the Almighty who has bestowed me with his blessings and strengthened me throughout my research.

I am deeply indebted to **Dr. Maged Mohammed Refaat** whose encouragement, guidance and support from the initial to the final level during my residency years and enabled me to develop a thorough understanding to the subject of my thesis, whom without his help, this work would have never been accomplished.

I would like to express my deep gratitude and respect to **Dr.**Nermine Abd elnour Melek, who deal with me as her young sister, for her great help, expert supervision, valuable advice and sincere support for doing this research.

Many thanks to **Dr. Mariam Maged Amin,** for her continuous care, scientific support and valuable advices throughout the accomplishment of this work.

Finally, I take this opportunity to express my acknowledgment to my family for their support, and also my patients and everyone who directly or indirectly helped and inspired me.

List of Contents

Title P		
•	List of Abbreviations	I
•	List of Tables	IV
•	List of Figures	VI
•	Introduction	1
•	Aim of the Work	4
•	Review of Literature	
	- Chapter (1): Allergic Rhinitis	5
	- Chapter (2): Lectins	33
	- Chapter (3): Lectin in Allergy	46
•	Subjects and Methods	59
•	Results	71
•	Discussion	87
•	Summary and Conclusion	95
•	Recommendations	97
•	References	98
•	Arabic Summary	

List of Abbreviations

ABPA	Allergic Bro	onchopul	mona	ry As	spergill	osis
ACE	Angiotensin-	-Convert	ting E	nzyn	ne	
APCs	Antigen Pres	senting (Cells			
ARIA	Allergic Rl	hinitis	and	its	Impact	on
	Asthma					
ASA	. Acetylsalicy	lic Acid				
C	Complement	t				
CCL	Chemokine 1	Ligand				
CD	Cluster of D	ifferentia	ation			
CLRs	.C-Type Lect	tin Recep	otors			
CPA	• -	-	-	gillos	sis	
CRDs		-	_	_		
CS	-	_				
CT			hy			
CTLD	-		•	n		
CVID					ciency	,
DCs	Dendritic Ce	ells				
DC-SIGN	Dendritic	Cell-Sp	pecific	2]	[ntrace]	llulaı
	adhesion r	_				
	integrin				C	
DEC-205	C					
DNGR-1		ell Natur	al Ki	ller 1	ectin g	group
	receptor-1					, 1
ELISA	•	ced immu	ınoso	rbent	assav	
HEPA						
HIV						
,				<i>J</i> • 1		

UList of Abbreviations

HRP...... Horseradish Peroxidase **IFN....** Interferon **IgE**Immunoglobulin E IL Interleukin **ISAAC** International Study Asthma and on Allergies in Childhood LTA Leukotriene Antagonist LTRAs.....Leukotriene Receptor Antagonists MAC......Membrane Attack Complex MASPs...... Mannan binding lectin Associated Serine **Proteases** MBL...... Mannan Binding Lectin MC..... Mast Cell MMR Macrophage Mannose Receptor MR...... Mannose Receptor NARES......Non-allergic rhinitis with eosinophilia syndrome NPV Negative Predictive Value NSAIDs...... Non-Steroidal Anti-inflammatory Drugs **OD.....** Optical Density OTC......Over the Counter **PAMP.....** Pattern Associated Molecular Patterns **PBE**Peripheral Blood Eosinophilis **PMBCs** Polymorphic Blood Nuclear Cells **PPV.....** Positive Predictive value PRRs......Pattern-Recognition Receptors rhMBL.....Recombinant human Mannan Binding Lectin

List of Abbreviations

Roc curve	Receiver Operating Characteristic curve
SC	Subcutaneous
SD	Standard Deviation
SLE	Systemic Lupus Erythematosus
SNPs	Single Nucleotide Polymorphisms
SP-A	Surfactant Protein A
SP-D	Surfactant Protein D
Th	.T-helper
TLRs	Toll-Like Receptors
TMB	.Tetramethylbenzidine
	Thymic Stromal Lympho-Poietin

List of Tables

Table No.	Title	Page
Table (1): H	istory and physical examination for	r
	suspected rhinitis	14
Table (2): Eti	ological classification of rhinitis	20
Table (3): A	ge and serum MBL level among both	1
	studied groups (patient and control)	71
Table (4): D	uration of illness and level of serun	1
	total IgE among patient group	72
Table (5): Ge	nder of Patients and Control Subjects	3 73
Table (6): Ge	nder of patients	74
Table (7): Fai	mily History in the patient group	75
Table (8): Ser	verity of Symptoms in patient group	76
Table (9):	Severity according to duration o	f
	symptoms in patient group	77
Table (10): 5	Serum absolute Eosinophilia in Patien	t
	group	78
Table (11): A	Association with Other Atopic Diseases	S
	in patient group	79
Table (12): 3	Skin Prick Test results among patien	t
	group	80
Table (13):	Comparison between both studied	1
	groups (patient and control) as regard	1
	gender	81
Table (14):	Comparison between both studied	1
	groups (patient and control) regarding	9
	age	82

List of Tables

Table No.		Title	Page
Table	(15):	Comparison between both studied groups (patient and control regarding MBL Level)
Table	(16):	Comparison among various study parameters as regard serum MBL level	
Table	(17):	Correlation between MBL level and Age, Duration and Total IgE level in patient group	1

List of Figures

Figure No.	Title	Page			
Figure (1): Pathway of allergic inflammation 12					
Figure (2):	Classification of allergic rhinitis				
	according to symptom duration and				
	severity	21			
Figure (3):	A stepwise algorithm for the treatment				
	of allergic rhinitis	23			
Figure (4):	An algorithm for the treatment of				
	allergic rhinitis according to severity.	24			
Figure (5): I	mmune and non-immune processes in				
	which lectins are involved	34			
Figure (6):	Structure of a C-Type Carbohydrate-				
	Binding Domain from a Human				
	Lectin. A calcium ion links a				
	mannose residue to the lectin.				
	Selected interactions are shown,				
	with some hydrogen atoms omitted				
	for clarity	36			
Figure (7): (CLR types	38			
Figure (8):	Surfactant protein A (SP-A) and SP-D	are			
members o	of a family of proteins known	as			
collectins		39			

Figure No.	Title	Page		
Figure (9): Schematic model of pattern recognition				
by	y human mannose binding lectins	3		
(N	MBLs). Micro pattern, monosaccharide	<u> </u>		
bi	nding by a single carbohydrate	;		
re	ecognition domain (CRD). Macro)		
pa	attern, polysaccharide binding by a	ı		
di	merized MBL	40		
Figure (10):	MBL pathway	42		
Figure (11):	Functions of Complement	43		
Figure (12):	Chromosomal location of MBL	52		
Figure (13)	: Percentage of male and female	,		
	patients among both studied groups	}		
	(patients and control)	73		
Figure (14):	Percentage of males and females	3		
	among patients group	74		
Figure (15):	Percentage of patients with positive	<u> </u>		
	family history is 35 % and patients	3		
	with negative family history is 65%	75		
Figure (16):	Percentage of mild to moderate/severe	,		
	cases	76		
Figure (17):	Percentage of symptom duration of	f		
	AR among patient group in which	1		
	persistent symptoms are present in	1		
	70 % of patients and intermittent in	1		
	30 % of patients	77		
Figure (18):	Percentage of patients with positive	<u> </u>		
	eosinophilia	78		

Figure No.	Title	Page
Figure (19):	Percentage of patients with associated	l
	other atopic diseases is 56.67% and	
	43.33 % have no other associated	l
	atopic diseases	79
Figure (20):	Percentage of patients with positive	;
	SPT to inhalants is 83.33 % and	
	positive SPT to non-inhalants is	3
	16.67 %	80
Figure (21):	Comparison between both studied	l
	groups (patient and control) as	3
	regard gender with no statistical	l
	significant difference	81
Figure (22):	Comparison between both studied	
	groups (patient and control)	
	regarding age with no statistically	τ
	significant difference	82
Figure (23)	Box plot represent the comparison	l
	between patient and control as	3
	regard mean MBL level which is	3
	higher in patient than control with	L
	highly statistically significant	-
	difference.	83

Abstract

Allergic rhinitis is a symptomatic disorder of the nose induced after allergen exposure due to an IgE-mediated inflammation of the membranes lining the nose. Mannan-binding lectin (MBL), a protein of the innate immune system coded for by the *MBL2* gene, constitutes an important effector molecule of innate immunity in the serum. It binds allergens/antigens, activates the lectin complement pathway and modulates the levels of proinflammatory cytokines.

The current study involved 60 adult patients with allergic rhinitis and 30 healthy medically free control subjects. There was no statistically significant difference between patients and control as regard gender or age. When serum MBL level was compared between cases and controls, a high statistically significant difference was detected.

On comparing serum MBL level among various study parameters only statistically significant difference was detected between patients with mild AR and those with moderate to severe AR. Although there was a positive correlation between MBL serum level and age and duration of illness (yrs), there was no statistical significance as well as an inverse correlation with serum total IgE level.

Key Words

Allergic Rhinitis, Lectins, Mannan Binding Lectin, Complement pathway, Allergy.