

SCALABLE HTTP MEDIA STREAMING USING DYNAMIC CONNECTIONS

By

Samar Ibrahim Ali Farag

A Thesis Submitted to the
Faculty of Engineeringat Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

SCALABLE HTTP MEDIA STREAMING USING DYNAMIC CONNECTIONS

By

Samar Ibrahim Ali Farag

A Thesis Submitted to the
Faculty of Engineeringat Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

Under the Supervision of

Prof. Dr. Neamat Sayed AbdelKader

Dr. Mohmoud Hamed Ismail

Professor of Engineering

Associate Professor

Electronics and Communications Engineering Department

Electronics and Communication Engineering Department

Faculty of Engineering, Cairo University

Faculty of Engineering, Cairo University

Dr. Ahmed Hamdy Zahran

Assistant Professor

Electronics and Communication Engineering Department Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

SCALABLE HTTP MEDIA STREAMING USING DYNAMIC CONNECTIONS

By

Samar Ibrahim Ali Farag

A Thesis Submitted to the
Faculty of Engineeringat Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

Approved by the Examining Committee:

Prof. Dr. Neamat Sayed AbdelKader, Thesis Main Advisor

Associate Prof. Yasmine Aly Fahmy, Internal Examiner

Prof. Dr. Abdelhalim Abdelnaby Zekry, External Examiner (Ain Shams University)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016 **Engineer's Name:** Samar Ibrahim Ali Farag

Date of Birth: 10/04/1989 **Nationality:** Egyptian

E-mail: samarali.cairouniv@gmail.com

Phone: 01140917029

Address: Assuity st., Imbaba, Giza, Egypt

Registration Date: 01/10/2012 **Awarding Date:** -/-/2016

Degree: Master of Science

Department: Electronics and Communications Engineering

Supervisors:

Prof. Dr. Neamat Sayed AbdelKader

Dr. Mohmoud Hamed Ismail Dr. Ahmed Hamdy Zahran

Examiners:

Prof. Dr. Abdelhalim Abdelnaby Zekry

(Ain Shams University)

Associate Prof. Yasmine Aly Fahmy (Internal Examiner)
Prof. Dr. Neamat Sayed AbdelKader (Thesis Main Advisor)

Title of Thesis:

SCALABLE HTTP MEDIA STREAMING USING DYNAMIC CONNECTIONS

Key Words:

Media Streaming; Video Encoding; Multiple Connections; Enhancement Layer Selection Policy; Video quality

Summary:

This thesis identifies the main components of the adaptive HTTP client and proposes a streaming heuristic over dynamic multiple connections. The key parameters of the streaming client are: the properties of the requested data, the connection management, and the enhancement policy used to improve the video quality. Our results show that the algorithm successfully achieves interruption free streaming under all the tested bandwidth and link configurations. Additionally, the usage of multiple connections results in noticeable improvements in the achieved streaming quality for large link delays.

(External Examiner)

Acknowledgment

In The name of Allah the most merciful the most gracious; All thanks to Allah the Lord of the Heavens and Earth and peace be upon Mohamed and his companions. I

wish to express my gratitude to my supervisors, **Prof. Dr. Neamat Abd El-Kader, and Dr. Ahmed Hamdy Zahran** who were helpful and offered invaluable assistance, support and guidance. I am also genuinely blessed to have **Dr. Mahmoud Hamed Ismail** as a member of the supervisory committee, for his great efforts and constant care. I consider myself as a lucky person to work under their supervision because I have learnt a lot from them, both in scientific and personal aspects. Actually, this work would not have been developed in this form without their guidance, scientific support, and fruitful discussions.

My deepest gratitude to my family and friends. Without their encouragement, I would not have gone this far.

Samar Ali

Dedication

This dissertation is dedicated to my parents, my sisters, and all my family.

Table of Contents

List of Tables						
Li	st of l	Figures		vi		
Li	st Of	Symbol	ls And Abbreviations	viii		
1	Introduction					
	1.1		ation			
	1.2	Thesis	contribution			
	1.3	Thesis	Outline	2		
2	Bac	kground	d and Related Work	3		
	2.1	Video	Coding Overview	3		
		2.1.1	Non-Scalable Video Coding	4		
		2.1.2	Scalable Video coding			
		2.1.3	Multiple Description Video Coding			
	2.2	Stream	ning Strategy			
		2.2.1	RTP/UDP			
		2.2.2	HTTP/TCP			
		A	MPD Manifest File			
		В	Segment Format			
		C	Client Operation			
	2.3		d work			
		2.3.1	HTTP Streaming Performance Evaluation			
		2.3.2	HTTP Streaming in Heterogeneous Networks			
		2.3.3	Segment Size Design			
		2.3.4	HTTP Streaming Rate Adaptation			
		2.3.5	Caching HTTP Streams			
		2.3.6	HTTP Streaming and Multicast			
		2.3.7	HTTP Streaming Standards			
	2.4	Conclu	asion	20		
3	Scal	able Vi	deo Coding Dynamic Adaptive Streaming Over HTTP using			
	Mul	tiple co	nnections (SVC-DASH-M) Implementation	21		
	3.1	Server		21		
	3.2	Client				
		3.2.1	Streaming Client Overview			
		A	Layer-Segment Requester			
		В	Connection Manager Design			
		C	Enhancement Layer Selection policy			
		3.2.2	Streaming Algorithm Implementation			
	3.3	Conclu	asion	32		

4	SVC	C-DASE	I-M Performance Evaluation	33		
	4.1	Testbe	ed Setup	33		
		4.1.1	Pre-processing			
		A	The Streaming Server	33		
		В	The Emulated Network	34		
		\mathbf{C}	The client	37		
		4.1.2	Post-Processing	37		
		Α	The Decoding Methods	38		
			A.1 JSVM Decoder	38		
			A.2 Proposed Method: Received Video Construc-			
			tion Using Extra Pre-Processing Steps	38		
			A.3 OpenSVCDecoder	40		
		В	Evaluation for the video quality	41		
			B.1 The subjective video quality Metric: Mean			
			Opinion Score	41		
			B.2 The objective video quality Metric: PSNR	41		
	4.2	Exper	iments	43		
	4.3	Perfor	mance Results	44		
		4.3.1	The DASH client using the whole network resources	45		
		Α	Horizontal Enhancement Layer Selection Policy	45		
		В	Diagonal Enhancement Layer Selection Policy	54		
		4.3.2	The Cross Traffic Emulation	60		
		Α	Horizontal Enhancement Layer Selection Policy	61		
		В	Diagonal Enhancement Layer Selection Policy (Slope =1)	64		
		4.3.3	The Quality and PSNR for different video sequences	65		
	4.4	Concl	usion	66		
5	Con	clusion	s and Future Work	71		
	5.1	Concl	usions	71		
	5.2	Future	ework	72		
Li	st of l	Publica	tions	74		
Re	eferen	ices		75		
Appendix						

List of Tables

Algorithm Functions	24
The Buffer Parameters	37
The Tested Videos	44
KPI	44
Bandwidth requirement for different qualities for Paris video	46
KPIs for different link bandwidths (256Kbps, 512Kbps, 1Mbps, and 2Mbps)	49
KPIs for different link bandwidths (4Mbps, and 8Mbps)	50
Key performance indicies for different link delays	51
KPIs for different bandwidths(256Kbps, 512Kbps, 1Mbps, and 2Mbps) .	57
KPIs for different bandwidths (4Mbps, and 8Mbps)	58
KPIs for different link delays	59
Interruption information for different connection configuration using diag-	
onal policy	65
Information about tested video sequences	65
	The Buffer Parameters

List of Figures

2.1	An example of MPEG coding with GOP (9, 3) [22]	4
2.2	Illustrative example of scalability dimensions in H.264/SVC [19]	5
2.3	An example of temporal video coding [22]	6
2.4	Caching and usage of network resources for AVC and SVC[36]	6
2.5	Streaming between an HTTP server and a streaming client[40]	9
2.6	MPD layout [40]	10
2.7	Media reception procedure	11
2.8	An example of heterogeneous wireless networks	13
2.9	Pull-Patching system Architecture	19
3.1	SVC-DASH-M System	21
3.2	The Extraction of the .264 Layer file	22
3.3	MPD Preparation	
3.4	Vertical Layer Selection Policy	
3.5	Horizontal Layer Selection Policy	
3.6	Diagonal Layer Selection Policy	28
3.7	SVC-DASH-M client implementation	29
4.1	Testbed Architecture	33
4.2	JSVM BitstreamExtractor output showing the properties of scalable video	
	layers for a certain segment	38
4.3	JSVM BitstreamExtractor output showing the properties of scalable video	
	layers when the fps of Qcif and cif are equal	40
4.4	PSNR caculation when the reference and received videos have different	
	temporal scalability	42
4.5	PSNR caculation when the received and reference videos have different	
	spatial scalability	43
4.6	Average Video Quality Versus Bandwidth for different connection config-	
	urations (n_c^{min}, n_c^{max}) for the Horizontal Policy	45
4.7	Segment Quality versus segment number for different connection configu-	
	rations (n_c^{min}, n_c^{max}) for the Horizontal Policy	47
4.8	Throughput versus Maximum number of connections for different network	- 0
	Bandwidth for the Horizontal Policy	50
4.9	Average Video Quality versus Link Delay for different connection config-	
4.10	urations (n_c^{min}, n_c^{max}) for the Horizontal Policy	52
4.10	Throughput versus Maximum number of connections for different link	
4 4 4	delay for the Horizontal Policy	53
4.11	Average Video PSNR versus Bandwidth for different connection configu-	
1 10	rations (n_c^{min}, n_c^{max}) for the Horizontal Policy	53
4.12	Average Video PSNR versus Link Delay for different connection configu-	_ 1
4.12	rations (n_c^{min}, n_c^{max}) for the Horizontal Policy	54
4.13	Segment Quality versus segment number for different connection configu-	
	rations (n_c^{min}, n_c^{max}) for the Diagonal Policy	55

4.14	Average Video Quality Versus Bandwidth for different connection config-	
	urations (n_c^{min}, n_c^{max}) for the Diagonal Policy	56
4.15	Average Video Quality versus Link Delay for different connection config-	
	urations (n_c^{min}, n_c^{max}) for the Diagonal Policy	56
4.16	Average Video PSNR versus Bandwidth for different connection configu-	
	rations (n_c^{min}, n_c^{max}) for the Diagonal Policy	58
4.17	Average Video PSNR versus Link Delay for different connection configu-	
	rations (n_c^{min}, n_c^{max}) for the Diagonal Policy	60
4.18	Setup for the cross traffic experiment	61
	Settled BW vs. Cross Traffic BW	61
4.20	Settled BW vs. Cross Traffic BW when The cross traffic is existed during	
	the streaming period	62
4.21	Segment Quality Vs. Segment Number at 2 Mbps UDP cross traffic for	
	different connection configurations (n_c^{min}, n_c^{max}) for the Horizontal Policy.	62
4.22	Segment Quality Vs. Segment Number at 4 Mbps CBR UDP cross traffic	
	for different connection configurations (n_c^{min}, n_c^{max}) for the Horizontal Policy	63
4.23	Average Video Quality for different connection configurations (n_c^{min}, n_c^{max}) at	
	the two different values of the Cross Traffic BW for the Horizontal Policy	67
4.24	Average Video Quality at the cross traffic equals 50%, and 90% of the	
	settled BW for different connection configurations (n_c^{min}, n_c^{max}) for the	
	Horizontal Policy	67
4.25		
	for different connection configurations (n_c^{min}, n_c^{max}) for the Diagonal Policy	68
4.26	Segment Quality Vs. Segment Number at 4 Mbps CBR UDP cross traffic	
	for different connection configurations (n_c^{min}, n_c^{max}) for the Diagonal Policy	68
4.27		
	at the two different values of the Cross Traffic BW for The Diagonal Policy	69
4.28	Average Video Quality for different connection configurations (n_c^{min}, n_c^{max}) at	
	the cross traffic equals 50%, and 90% of the settled BW for the Diagonal	
	Policy	69
4.29	Average Video quality for different connection configurations (n_c^{min}, n_c^{max})	
	at 2Mbps BW, and 10ms link delay for the Horizontal Policy	70
4.30		
	at 2Mbps BW, and 10ms link delay for the Horizontal Policy	70

List Of Symbols And Abbreviations

HTTP Hypertext Transfer Protocol

DASH Dynamic Adaptive Streaming Over HTTP

SVC scalable video coding

PSNR Peak Signal to Noise Ratio

IPTv Internet Protocol TV

NAT Network Address Translation

RTP Real time protocol

UDP User Datagram Protocol

TCP transmission control protocol

AVC advanced video coding

MPEG Moving Picture Experts Group

SVC-DASH-M Scalable Video Coding Dynamic Adaptive Streaming

Over HTTP using Multiple Connections

JPEG Joint Photographic Experts Group

I-frame intra-coded frame P-frame predictive-frame

B-frame bi-directionally predictive-coded frame

GoP Group of Pictures

Did spatial scalability layer (Multiple resolutions)

Tid temporal scalability layer(Multiple frames per second)

Qid quality scalability layer
MDC Multiple description coding

MPD Media Presentation Description

SAP Stream Access Point

URL Uniform Resource Locator

QoS quality of service
QoE quality of Experience
MOS Mean Opinion Score
Tinit initial buffering time

 T_{rebuf} mean rebuffering duration f_{rebuf} rebuffering frequency

OSMF Open Source Media Framework RTSP Real Time Streaming Protocol

HetNets Heterogeneous Networks
RAN Radio Access Network

WiMAX Worldwide Interoperability for Microwave Access

WiFi wireless fidelity

E-UTRAN Evolved Universal Mobile Telecommunications System Terrestrial

Radio Access Network

LTE Long Term Evolution

LTE-A Long Term Evolution-Advanced

HAS HTTP Adaptive Streaming
CDN Content Distribution Network
SFTM Segment fetch time metric
MSD media segment duration
SFT segment fetch time

RSFT remaining segment fetch time, and real time buffering status of DASH

TBMT target buffered media time

 ts_{ns} playback time-stamp of the first frame of the next segment

ts₀ current playback time-stamp at the time instant of requesting the next segment

 \tilde{B} estimated bitrate of the next segments

 SFT_{av} available time to fetch the next segment without suffering

from any playout interruption

 n_p number of parallel receiving segments

 b_{s_k} received bits of segments s_k

 ft_{s_k} fetch time from requesting s_k to the current time

 d_{ns} denotes the next segment duration

PFTM portion fetch time metric
NS2 Network Simulator-version 2
AHS Adaptive HTTP Streaming

ISAVS Intelligent Bit-rate Switching based Adaptive Video Streaming λ represents an appreciation weight for the quality variations

 T_c segment inter-arrival time

 T_R segment duration

 $[f_{T_c}(t)]_i$ probability density function of inter-fragment time for the *i*th quality level

yuv yuv model defines a color space in terms of one luma (Y)

and two chrominance (UV) components

JSVM Joint Scalable Video Model

Seg_file segment file

NALU Network Abstraction Layer Unit AWK interpreted programming language

 B_{min} low threshold for the data to be maintained in the buffer

to accommodate network condition variations

 B_{target} represents a target buffer level that the application should be operating around

SD duration of the received segment

SFT duration over which segment is fetched

 μ Network indication ratio

Kb/s Kilo bit per second

 ϵ application demand ratio

 r_{next} rate of the next two segments to be requested

 r_{prev} rate of the received segment

MIN minimum buffer level TARGET Target buffer level

CIF Common Intermediate Format

QCIF Quarter CIF

FIFO first-in first-out scheduler
RR Round-Robin algorithm
TBF Token Bucket Filter

HZ Hertz

mpu Minimum Packet Unit
MTU Maximum transfer Unit

Bw Bandwidth I/O Input/output

TSO Tcp-Segmentation-Offload
NIC network interface controller
GSO generic-segmentation- offload

GRO generic-receive-offload

API Application Program Interface

OS Operating System *MSE* mean squared error

fps number of frames per second

SNR Signal to Noise Ratio

 t_d download time

KPI Key Performance Index

ms milliseconds

Mbps Mega bit per second CBR Constant Bit rate

ICT International Conference on Telecommunications

 n_i The number of interrupts

 n_c The number of opened connections

 n_{cc} The number of closed connections due to low bandwidth

 d_{v} The application downloaded data

 t_d The time at which the application stops downloading more layer-segments

 γ The application goodput

q The average quality