Hepatitis B Virus Genotypes among Egyptian Patients

Protocol of thesis

Submitted for partial fulfillment of Master Degree In Clinical and Chemical Pathology

By

Dina Mahmoud El-Sayed M.B., B.Ch.
Cairo University

Supervised by

Professor/Aisha Yassin Abdel Ghaffar

Professor of Clinical and Chemical Pathology Faculty of Medicine-Ain Shams University

Professor/Salwa Ibrahim Bakr

Profesor of Clinical and Chemical Pathology Faculty of Medicine-Ain Shams University

Doctor/Dina El-Sayed El-Shennawy

Lecturer of Clinical and Chemical Pathology Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University 2010

To My Mother, To my beloved, caring and understanding husband

First of all. Thanks to Allah

I would like to express my deepest thanks, gratitude and profound respect to my honored **Prof. Aisha Yassin Abdel Ghaffar**, Professor of Clinical and Chemical Pathology, Faculty of Medicin, Ain Shams University, for her meticulous supervision. I consider myself fortunate to work under her supervision. Her constant encouragement and constructive guidance were of paramount importance for the initiation, progress and completion of this work.

I would like to extend my thanks to **Prof. Salwa Ibrahim Bakr,** Profesor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for her active participation in this work. She really did her best to get this work fulfilled.

Also I would like to thank **Dr. Dina El-Sayed El-Shennawy**, Lecturer of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, who offered me a lot of guidance, continuous encouragement and advice while supervising every step in this work.

I would also like to express my great gratitude to **Prof. Hatem Mahmoud El-Seba'ee**, Professor of Medical Biochemistry,

Faculty of Medicine, Al-Monofeya University and **Dr. Ashraf Yossef El-Fert**, Lecturer of Clinical Biochemistry, Faculty of

Medicine, Al-Monofeya University, for their indispensable effort

and help in the practical part of this work.

List of Contents

Introduction	
Aim of the work	3
Hepatitis B virus	4
HBV structure and genome	4
HBV life cycle	7
HBV serotypes, genotypes and mutants	12
Immunopathogenesis of HBV infection	13
Natural history of HBV infection	29
Epidemiology of HBV infection	35
Clinical feature of HBV infection	37
Diagnosis of HBV infection	39
Follow up of HBV infection	42
Prevention of HBV infection	42
HBV genotypes	44
Geographic distribution of HVB genotypes	45
HBV genotype and disease progression	47
HBV genotype and HBcAg seroconversion	49
and viral load	
HBV genotype and anti-viral therapy	50
HBV genotype and liver transplantation	53
Determination of HBV genotype	54
Subjects and Methods	60
Results	69
Discussion	75
Recommendations	79
Summary	80
References	82
Arabic Summary	1

List of Tables

Table 1:	Characteristics of chronic hepatitis B at different	
	stages.	35
Table 2:	Serological and virological profiles in patients with HBV infection	41
Table 3:	Advantages and disadvantages of different HBV genotyping methods.	58
Table 4:	Statistical comparison between chronic hepatitis B Egyptian patients with genotype B and D as regard age, level of ALT and AST, and viremia	
	level	71
Table 5:	Statistical comparison between chronic hepatitis B Egyptian patients with genotype B and D according to gender	72
T		
Table 6:	Correlation between studied parameters	73

List of Figures

Schematic structure of the HBV particle and
subviral particles
The genome organisation of HBV
Hepatitis B virus replication
Coordinate activation of innate and adaptive
response is necessary for HBV control 19
Platelets facilitate the accumulation of CTLs in
the infected liver
Correlation of T-cell defects with virus
replication levels
HBV-specific T-cell tolerance
Schematic figure of how the B7-H1/PD-1
pathway may mediate the exhaustion of virus-
specific T cells in chronic HBV infection 29
Natural history of HBV infection
The progression from acute to chronic HBV
infection
Geographical distribution of HBV genotypes 47
RFLP pattern of the products of DNA
fragment of the S region (Genotype B)
RFLP pattern of the products of DNA
fragment of the S region (Genotype D) 67
Percentages of HBV genotypes in chronic
hepatitis B Egyptian patients
Comparison between cases with genotype B or
D according to gender
Scatter diagram showing the relation between
age and AST
Scatter diagram showing the relation between
age and ALT

List of Abbreviation

AFP: Alpha-fetoprotein

ALT: Alanine aminotransferase

Anti-HBc: Anti hepatitis B core antibody

Anti-HBs: Anti hepatitis B surface antibody

APCs: Antigen-presenting cells

BCR: B cell receptor

ccc DNA: Covalently closed circular DNA

CD: Cluster of differentiation

CTL: Cytotoxic T lymphocytes

DCs: Denderitic cells

Fas L: Fas ligand

GM-CSF: Granulocyte-macrophage colony-stimulating

factor

Glycine to Arginine substitution at codon 145

HBcAg: Hepatitis B core antigen

HBeAg: Hepatitis B envelope antigen

HBsAg: Hepatitis B surface antigen

HBV: Hepatitis B virus

HCC: Hepatocellular carcinoma

ICU: Intensive care unit

IFN-α/\beta/g Interferons alpha/beta/gamma

Ig: Immunoglobulin

IHL: Intra-hepatic lymphocytes

IL: Interleukin

INNO-LIPA: Innogenetics line probe assay

IRF3: Interferon regulatory factor 3

ISGs: IFN-stimulated genes

L protein: Large protein

M protein: Medium protein

MCA: Melting curve analysis

M-CSF: Macrophage colony-stimulating factor

MDA5: Melanoma differentiation associated gene 5

mDCs: Myeloid dendritic cells

MHC: Major histocompatibility complex

MIP-1 α : Macrophage-inflammatory protein-1 α

mRNA: Messenger RNA

NF-κβ: Nuclear factor-κ β

NK: Natural killer

NKT: Natural killer T

OBI: Occult HBV infection

ORF: Open reading frame

P: Polymerase

PD: Programmed death

pDC: Plasmacytoid dendritic cells

PD-L1: Programmed death-ligand 1

pg RNA: Pre-genomic RNA

PRRs: Pattern recognition receptors

RFLP: Restriction fragment length polymorphism

RIG-I: Retinoic acid-inducible gene I

S protein: Small protein

SOI: Secondary occult infection

SVP: Subviral particles

Th1: T helper-1

Th2: T helper-2

TLRs: Toll-like receptors

TRAIL: TNF-related apoptosis-inducing ligand

INTRODUCTION

Hepatitis B virus (HBV) is very common worldwide. It is characterized by causing hepatitis B. However, it can also lead to cirrhosis and hepatocellular carcinoma (HCC). It has also been suggested that it may increase the risk of pancreatic cancer (Hassan et al., 2008). Chronic infection with HBV is a common cause of death associated with liver failure, cirrhosis, and liver cancer. Worldwide, approximately 350 million persons have chronic HBV infection, and an estimated 620,000 HBV-related die annually from liver disease persons (Goldstein et al., 2005).

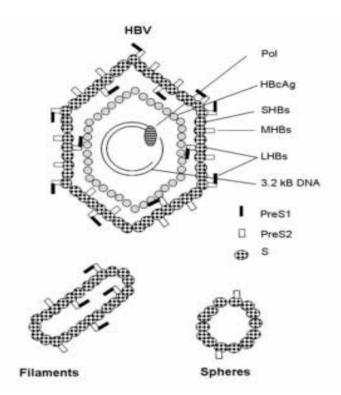
A classification reflecting the phylogenetic origin of the virus isolates was proposed dividing HBV into eight genotypes designated A to H. These genotypes were differentiated by a sequence divergence in the entire genome exceeding 8%. While, subgenotypes have been described which differ by at least 4% (Norder et al., 2004). The genotypes show a distinct geographical distribution between, and even within, regions and are proving to be an invaluable tool in tracing the molecular evolution and patterns and modes of spread of HBV. Structural and functional differences between genotypes can influence the severity, course and likelihood of complications, hepatitis B e antigen (HBeAg) seroconversion as well as response to treatment of HBV infection and possibly vaccination against the virus (Chu et al., 2002).

As of today, HBV genotypes remain significant mostly from the research point of view. However, there is growing evidence from research being conducted around the globe that

& Introduction

the day when HBV genotypes will become as important clinically as hepatitis C virus genotypes may not be too far away (Mahtab et al., 2008).

Aim of The Work


The aim of this work is to detect the predominant genotype(s) of HBV among the Egyptian chronic hepatitis B patients and its relation to the disease state.

HEPATITIS B VIRUS INFECTION

A) HBV Structure and Genome:

The HBV is classified as the type species of the Orthohepadnavirus (**Hunt**, 2007). The genus is classified as part of the Hepadnaviridae (hepatotropic DNA viruses) family which have not been assigned to a viral order (**Mason et al.**, 2008).

The infectious HBV virion (also known Dane particle) is a spherical particle, 42 nm in diameter. The virion contains the nucleocapsid which consists of the circular partially doublestranded genomic DNA covalently linked to the viral reversetranscriptase. This nucleocapsid is surrounded by a lipid bilayer in which the three envelope proteins [small (S), medium (M) and large (L)] are anchored as transmembrane proteins playing a major role in HBV morphogenesis and infectivity (Bruss, **2007).** The HBV surface proteins are not only incorporated into the virion envelope but also bud in an empty and non-infectious subviral particles (SVP). They consist of an envelope glycoprotein and host derived lipids. The SVP conformation is organized as an octahedral sphere about 20 nm in diameter or as a filament with the same diameter but with variable length (Gilbert et al., 2005) (Fig.1). The SVPs reach a 10.000 fold higher concentration than virions in the serum. The precise biological significance of this massive overproduction of such SVP is unknown; however, it has been speculated that they serve as decoys for host's immune system (Zekry and Mchutchison, 2007).

Fig. 1: Schematic Structure of the HBV Particle and Subviral Particles. The envelope is formed by the three viral surface proteins LHBs, MHBs and SHBs that surround the viral nucleocapsid. The core protein (HBcAg) forms the nucleocapsid that harbors the partially double-stranded circular DNA genome that is covalently linked to the viral polymerase. In the serum of HBV-positive patients, large amounts of non-infectious subviral particles in the form of filaments or spheres are found; these are composed of the viral surface proteins, but lack the viral nucleic acid (Schädler and Hildt, 2009).

The genome of HBV is made of circular DNA, but it is unusual because the DNA is not fully double-stranded. The 5°° end of the full length strand (minus strand) is linked to the viral DNA polymerase, while the 5°° end of the short length strand (plus strand) is linked with short piece of capped RNA. The