EFFECT OF SOME MINERALS AND DISSOLVED ORGANIC CARBON ON THE BEHAVIOUR OF SOME HEAVY METALS IN SOILS

By

ASHRAF LATIF ISKANDER BOTROUS

B.Sc. (Microbiology and Chemistry), Ain Shams University, 2002

A thesis submitted in partial fulfillment

of

the requirements for the degree of

MASTER OF SCIENCE

in

Agricultural Science (Soil)

Department of Soil Faculty of Agriculture Ain Shams University

Approval Sheet

EFFECT OF SOME MINERALS AND DISSOLVED ORGANIC CARBON ON THE BEHAVIOUR OF SOME HEAVY METALS IN SOILS

By

ASHRAF LATIF ISKANDER BOTROUS

B.Sc. (Microbiology and Chemistry), Ain Shams University, 2002

Date of Examination: 16/12/2010

EFFECT OF SOME MINERALS AND DISSOLVED ORGANIC CARBON ON THE BEHAVIOUR OF SOME HEAVY METALS IN SOILS

By

ASHRAF LATIF ISKANDER BOTROUS

B.Sc. (Microbiology and Chemistry), Ain Shams University, 2002

Under the supervision of:

Dr. Eid Morsy Khaled

Prof. of Soil Chemistry, Department of Soil, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Abd El-Aziz Saad Nasr Sheta

Prof. of Soil Pedology, Department of Soil, Faculty of Agriculture, Ain Shams University

ABSTRACT

Ashraf Latif Iskander Botrous: Effect of Some Minerals and Dissolved Organic Carbon on the Behaviour of Some Heavy Metals in Soils. Unpublished M.Sc. Thesis, Department of Soil, Faculty of Agriculture, Ain Shams University, 2010.

In this study the effect of natural minerals such as zeolite and bentonite and the dissolved organic carbon on the behavior of heavy metals (Zn, Mn and Ni) in two different soil samples (sand and clay soils) were carried out. The main results can be summarized as follows:

1- Adsorption and desorption experiment:

The studied minerals zeolite and bentonite showed considerable variations in Zn, Mn and Ni sorption properties and DTPA extractability. Bentonite has the highest ability for Mn and Ni sorption, while zeolite has the highest ability for Zn sorption. Zeolite retains a relatively high percentage of the sorbed Zn against the extraction by DTPA. Zinc, manganese and nickel sorption data were described by a Freundlich and Langmuir adsorption model. The results showed that Langmuir constants for Zn, Mn and Ni sorption [maximum adsorption (b mmol kg⁻¹)] have been in the following decreasing order: Bentonite Mn > Bentonite Ni > Zeolite Mn > Bentonite Zn > Zeolite Ni > Zeolite Zn. While the [binding strength values (k in mmol 1⁻¹)] was in the order: Zeolite Mn > Zeolite Zn > Zeolite Ni > Bentonite Mn > Bentonite Zn > Bentonite Ni. The results suggest that natural zeolite and bentonite minerals have a high potential for Zn, Mn and Ni retention. The availability of the retained Zn, Mn and Ni was higher for Zn compared with Mn and Ni, and zeolite seems to have the highest ability for Zn sorption and extractability by DTPA. Bentonite has intermediate characteristics for Zn, Mn and Ni sorption.

2- Incubation experiment:

Data of the incubation showed that there are gradual increasing in the concentration of studied heavy metal in all fractions by increasing the rates of metals loading on zeolite and bentonite and as a results of incubation times. This increasing for the concentration of heavy metals (Zn, Mn and Ni) under study not only in the means of rates of doses of zeolite and bentonite but also in the means of incubating times. In the control clay soil, the background Zn, Mn and Ni in each fraction were generally in the order carbonate > Fe-Mn oxides > organic matter > exchangeable > water soluble fraction. While in the untreated sand soil, the background Zn, Mn and Ni in each fraction were generally in the order Fe–Mn oxides > exchangeable > carbonate > organic matter > water soluble. It was observed that after the period of incubation, metals in exchangeable fraction were predominant in all treatments of both soils with some exception. Moreover the increases in the other fractions were also observed. It may indicated that a fast process of metal distribution among the fractions occurred during the first 2-days incubation. The redistribution process from 2-weeks to 4-weeks is much slower comparing with that in 2-days. At the end of 4-weeks incubation, the percentages of Zn, Mn and Ni in exchangeable fraction were still very high. This observation was possibly due to the slow transformation of metals from loosely bound fractions such as exchangeable fraction to strongly bound.

3- Column experiment:

Addition of the natural mineral loaded by Zn, Mn and Ni to surface of the soil resulted in a marked increase in the amount of total Zn, Mn and Ni in both soil. The increases corresponding, in general, to the concentrations of metals loaded in the clay mineral. For the rate of natural clay mineral (0.4%) were chosen for application, total amounts

were presented (mg/kg soil) as a function of soil depth. Maximum total concentrations of metals were found in the surface layer of soil (0-5 cm) for all metal ions. Data revealed that the amounts of Zn and Mn extracted by DTPA solution were generally decreased with increasing soil depth this in case of Zn and Mn. While Ni has a different pattern where it decreases by depth then increased in the last segment of column especially in case of sandy soil. Mobility of heavy metals were followed the order Mn > Zn > Ni.

Key words:

Heavy metal, Zeolite, Bentonite, and Dissolved Organic Carbon (D.O.C).

ACKNOWLEDGEMENTS

First of all, great thanks and praises be to Allah, who guided me to accomplish this work and assist me in all my life. All words are not be enough to thank Allah. I would like to express my deepest gratitude to my advisers, **Prof. Dr. Eid Morsy Khaled** and **Prof. Dr. Abd El-Aziz Sheta**, Soils Department, Faculty of Agriculture, Ain Shams University, for suggesting the problem, supervision, continuous helping and introducing all facilities needed throughout the whole investigation and during writing the manuscript. Thanks are also extend to all staff members at Soil Department, Faculty of Agriculture, Ain Shams University, for their help and encouragement and supporting the equipment to this research works. Special thanks are also extended to my friends who are always nice and friendly. Finally, I would like to express my deepest love to my father, mother, brother and my sister for their encouragement and support that have enable me to succeed in my life.

CONTENTS

	Page
LIST OF TABLES	IV
LIST OF FIGURES	VII
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	3
1. Heavy metals	3
1.1. Behavior of heavy metals in soils	4
1.2. Solubility and Mobility	5
1.3. Bioavailability	7
2. The processes that control heavy metal mobility in soil	8
2.1. Cation exchange	8
2.2. Specific adsorption	8
2.3. Precipitation	9
2.4. Complexation	10
3. Factors affect the bioavailability and immobilization of he	eavy
metals in soils	11
3.1. Effect of the soil pH	12
3.2. Effect of redox reactions	14
3.3. Effect of organic matter	
3.4. Effect of iron oxides	18
3.5. Effect of complex formation	20
3.5.1. Complexation by inorganic ligands	20
3.5.2. Complexation by organic ligands	20
4. Adsorption process and heavy metal adsorption on natural	
minerals	22
4.1. Adsorption Process	22
4.2. Adsorption Isotherms	22
4.2.1. Langmuir Isotherm	23
4.2.2. Freundlich Isotherm	23

5. Heavy metal adsorption by low-cost adsorbents (natural mine	ral)24
5.1. Zeolites	25
5.2. Bentonite clay	27
6. Dissolved organic carbon	28
7. Heavy Metal Movements down the Soil Profile	34
8. General features of the investigated heavy metals	40
8. 1. Zinc	40
8. 2. Manganese	42
8. 3. Nickel	44
III. MATERIALS AND METHODS	47
1. Adsorption and desorption experiment	48
1.1. Adsorption experiment	48
1.2. Desorption experiment	48
2. Loading of heavy element on clay mineral	48
3. Extraction of dissolved organic carbon from the one of its ava	
sources (i.e., compost)	52
4. Incubation experiment	52
5. Columns experiment	53
6. Methods of analysis	54
6.1. Soil analysis	54
6.1.1. Chemical and physical analysis	54
6.1.2. Fractionation of metals	55
6.2. Clay mineral analysis	57
6.2.1 XRD measurement	57
6.2.2. Surface area	58
6.2.3. Cation exchange capacity	58
6.3. Dissolved organic carbon determination	60
IV. RESULT AND DISSECTION	62
1- Sorption and desorption of Zn, Mn and Ni on clay minerals	62
2- Fractionation of heavy metals forms	73

2.1. Fractionation of Ni	89
2.2. Fractionation of Zn	92
2.3. Fractionation of Mn	95
3- Movement and distribution of heavy metals in soil column	100
V. SUMMARY	117
VI. REFERENCES	120
ARABIC SUMMARY	

LIST OF TABLES

Table No. Page	<u> </u>
1. Some physical and chemical properties of the studied soils4	19
2. Some physical and chemical properties of the studied minerals	50
3. Selected chemical analyses of zeolite and bentonite minerals used	
in this study5	51
4. Chemical analysis of the compost5	51
5. Chemical analysis of the water dissolved organic carbon fraction5	51
6. Langmuir equations and constants (b and k) for Zn, Ni and Mn	
sorption by zeolite and bentonite6	54
7. Freundlich equations and constants for Zn, Ni and Mn sorption by	
zeolite and bentonite6	54
8. Amounts of sorbed Zn and DTPA extractable (three successive	
extractions) from Zn, treated and untreated zeolite and bentonite6	59
9. Amounts of sorbed Mn and DTPA extractable (three successive	
extractions) from Mn, treated and untreated zeolite and bentonite?	70
10. Amounts of sorbed Ni and DTPA extractable (three successive	
extractions) from Ni, treated and untreated zeolite and bentonite7	71
11. Effect of zeolite and bentonite and the watering solution on the	
water soluble form of Ni (mg.kg ⁻¹) in the studied soils at different	
incubation periods7	74
12. Effect of zeolite and bentonite and the watering solution on the	
exchangable form of Ni (mg.kg ⁻¹) in the studied soils at different	
incubation periods	75
13. Effect of zeolite and bentonite and the watering solution on the	
Carbonate form of Ni (mg.kg ⁻¹) in the studied soils at different	
incubation periods	76
14. Effect of zeolite and bentonite and the watering solution on the Fe	:
and Mn oxide form of Ni (mg.kg ⁻¹) in the studied soils at different	
incubation periods7	77

15.	Effect of zeolite and bentonite and the watering solution on the
	organic matter form of Ni (mg.kg ⁻¹) in the studied soils at different
	incubation periods78
16.	Effect of zeolite and bentonite and the watering solution on the
	water soluble form of Zn (mg.kg ⁻¹) in the studied soils at different
	incubation periods
17.	Effect of zeolite and bentonite and the watering solution on the
	exchangeable form of Zn (mg.kg ⁻¹) in the studied soils at different
	incubation periods80
18.	Effect of zeolite and bentonite and the watering solution on the
	Carbonate form of Zn (mg.kg ⁻¹) in the studied soils at different
	incubation periods81
19.	Effect of zeolite and bentonite and the watering solution on the Fe
	and Mn oxide form of Zn (mg.kg ⁻¹) in the studied soils at different
	incubation periods82
20.	Effect of zeolite and bentonite and the watering solution on the
	Organic matter form of Zn (mg.kg ⁻¹) in the studied soils at
	different incubation periods83
21.	Effect of zeolite and bentonite and the watering solution on the
	water soluble form of Mn (mg.kg ⁻¹) in the studied soils at different
	incubation periods84
22.	Effect of zeolite and bentonite and the watering solution on the
	exchangable form of Mn (mg.kg ⁻¹) in the studied soils at different
	incubation periods
23.	Effect of zeolite and bentonite and the watering solution on the
	Carbonate form of Mn (mg.kg ⁻¹) in the studied soils at different
	incubation periods86
24.	Effect of zeolite and bentonite and the watering solution on the Fe
	and Mn oxide form of Mn (mg.kg ⁻¹) in the studied soils at
	different incubation periods87
25.	Effect of zeolite and bentonite and the watering solution on the

	organic matter form of Mn (mg.kg ⁻¹) in the studied soils at
	different incubation periods
26.	Total concentration of Ni (mg.Kg ⁻¹) for sandy column soil102
27.	Total concentration of Ni $(mg.Kg^{-1})$ for clay column soil102
28.	Total concentration of Mn (mg.Kg $^{-1}$) for sandy column soil103
29.	Total concentration of Mn (mg.Kg $^{-1}$) for clay column soil103
30.	Total concentration of Zn (mg.Kg $^{\text{-1}}$) for sandy column soil104
31.	Total concentration of Zn (mg.Kg $^{\text{-1}}$) for clay column soil104
32.	Available concentration of Ni (mg.Kg ⁻¹) extracted by DTPA
	for sand column soil
33.	Available concentration of Ni (mg.Kg ⁻¹) extracted by DTPA
	for clay column soil
34.	Available concentration of Mn (mg.Kg ⁻¹) extracted by DTPA
	for sand column soil
35.	Available concentration of Mn (mg.Kg ⁻¹) extracted by DTPA
	for clay column soil
36.	Available concentration of Zn (mg.Kg ⁻¹) extracted by DTPA
	for sand column soil
37.	Available concentration of Zn (mg.Kg ⁻¹) extracted by DTPA
	for clay column soil111

LIST OF FIGURES

Fig. No.	Page
1. X- ray diffraction pattern of zeolite sample	59
2. X- ray diffraction pattern of bentonite sample	59
3. X- ray diffraction pattern of bentonite sample (Mg- saturated	
ethylene glycol treatments)	59
4. Sorption isotherms of Zn, Mn and Ni by zeolite and bentonite	e65
5. Langmuir and Freundlich plot of Zn adsorbed by zeolite and	
bentonite	66
6. Langmuir and Freundlich plot of Mn adsorbed by zeolite and	
bentonite	67
7. Langmuir and Freundlich plot of Ni adsorbed by zeolite and	
bentonite	68
8. Total concentration of Ni (mg.Kg ⁻¹) for sandy and clay soils	105
9. Total concentration of Mn (mg.Kg ⁻¹) for sandy and clay soils	106
10. Total concentration of Zn (mg.Kg ⁻¹) for sandy and clay soils	107
11. Available concentration of Ni (mg.Kg ⁻¹) extracted by DTPA	
for sandy and clay soils	113
12. Available concentration of Mn (mg.Kg ⁻¹) extracted by DTP	A
for sandy and clay soils	114
13. Available concentration of Zn (mg.Kg ⁻¹) extracted by DTPA	L
for sandy and clay soils	115

I. INTRODUCTION

There is growing concern that the heavy metal contents of soil are increasing as the result of industrial, mining, agricultural and domestic activities. Although certain heavy metals, such as manganese and zinc, are essential for plant growth as micronutrients, they are toxic at higher levels, as are metals such as nickel.

Interactions of heavy metals (Zn, Mn and Ni) with phyllosilicate mineral such as bentonite or tectosilicate such as zeolite are important in the chemical speciation and fate of these metals in soils and other ecosystems. The processes that decrease the activity and extractability of these metals retained by above natural minerals are believed to be important in the availability of these metals added to soils and in the remediation of soils contaminated with these metals.

So understanding the sorption process by natural zeolite and bentonite are necessary for efffictive utilization of these minerals. It can be used in the soil as a trap for heavy metals and as nutrient adsorbents and consequently as slow releases to plant. The fate and transport of metal ions in the environment are generally controlled by sorption reactions. Adsorption and desorption are a major process responsible for accumulation of heavy metals. Therefore the study of adsorption processes is of utmost importance for the understanding of how heavy metals are transferred from a liquid mobile phase to the surface of a solid phase and vise versa.

Also the migration of heavy metals could be enhanced by their complexation with some fractions of the organic matter. In addition to humic-like substances, compost extract by water produces a water-soluble organic matter known as dissolved organic carbon (DOC), which can pass through a 0.45 µm filter. This DOC has a low molecular weight and is a mixture of polymeric materials containing a number of polar and non-polar sites.