

NEUROPATHY AND MYOPATHY IN CRITICALLY ILL PATIENTS

An essay

Submitted for Partial Fulfillment of the M.Sc. Degree in

Intensive Care

By

Mostafa Abdelraheem Fawzy Albalsha,

M.B., B.Ch.

Under Supervision of

Prof. Dr. Madiha Metwaly Zidan

Professor of Anesthesiology and Intensive Care Faculty of Medicine -Ain Shams University

Dr. Magdy Chehata Metias

Lecturer of Anesthesiology and Intensive Care Faculty of Medicine-Ain Shams University

Faculty of Medicine Ain Shams University 2011

Acknowledgment

To **Allah**, goes all my deepest gratitude and thanks for achieving any work in our life.

I would like to express my profound gratitude & deepest appreciation to **Prof. Dr. Madiha Metwaly Zidan**, Professor of Anesthesiology and Intensive care, Faculty of Medicine, Ain Shams University, for her relentless support, valuable instructions & for the time & effort she devoted throughout the entire course of the study.

I am deeply thankful to **Dr. Magdy Chehata Metias**, Lecturer of Anesthesiology and Intensive care, Ain Shams University, for his willing assistance, enlightening comments, splendid efforts & continuous encouragement along the entire course of the study.

Last but not least, my deep appreciation is expressed to all the staff of Anesthesiology and Intensive care Department, Ain Shams University as well as to all members of my family for their cooperation and encouragement.

Mostafa Abdelraheem Fawzy M.B., B.Ch.

List of Abbreviations

Abbreviation	Meaning
AchE	Acetylcholinesterases
ACHR	Acetylcholine Receptor
A-CIDP	Acute Onset CIDP
ADH	Antidiuretic Hormone
ADM	Asymmetrical-Dimethylarginine
ADP	Adenosine Diphosphate
AHC	Anterior Horn Cells
AIDP	Acute Inflammatory Demyelinating Polyradiculoneuropathy
AIP	Acute Intermittent Porphyria
AIA	D'Aminolevulinic Acid
AIA-D	D Aminolevulinic Acid Dehydratase
AMAN	Acute Motor Axonal Neuropathy
AMD	Acid Maltase Deficiency
AMSAN	Acute Motor Sensory Axonal Neuropathy
AP	Adductor Pollicis
ARDS	Acute Respiratory Distress Syndrome
ARP	Absolute Refractory Period
ATP	Adenosine Triphosphate
ATPase	Adenosine Triphosphatase Enzyme
BDNF	Brain-Derived Neurotrophic Factor
BIG IV	Botulism Immune Globulin Intravenously
Botox	Botulinum Toxin
BP	Blood Pressure
°C	Celsius
Ca2 +	Calcium
CDC	Centers For Disease Control
Œ	Contractile Hement
Œ	Cholinesterase Enzyme
CEP	Congenital Erythropoietic Porphyria
CIDP	Chronic Inflammatory Demyelinating Polyradiculoneuropathy
CIM	Critical Illness Myopathy
CIN	Critical Illness Neuromyopathy

<u>List of Abbreviations (cont.)</u>

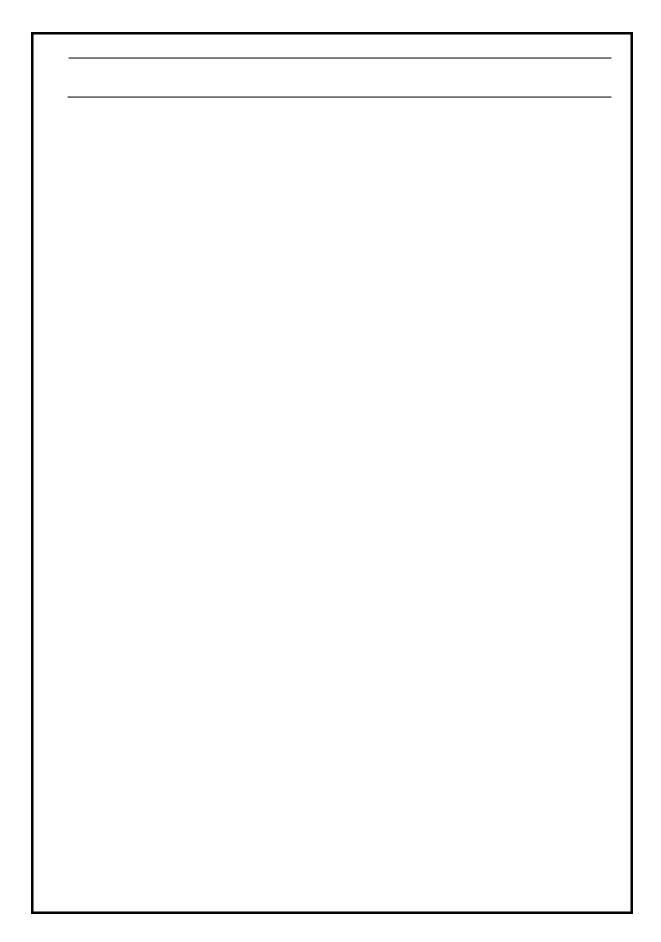
Abbreviation	Meaning		
anm	Critical Illness Neuromyopathy		
CIPNM	Critical Illness Polyneuromyopathy		
CK	Creatine Kinase		
CK-MM	Creatine Kinase Miscle Miss		
d ''	Chloride		
cm	Centimeter		
CMAP	Compound Miscle Action Potential		
CMS	Congenital myasthenic syndrome		
CMV	Controlled Mechanical Ventilation		
CNS	Central Nervous System		
002	Carbon Dioxide		
CoA	Coenzyme A		
COPD	Chronic Obstructive Pulmonary Disease		
CSF	Cerebrospinal Fluid		
DP	Depolarization		
EMG	Hectromyography		
EPP	Erythropoietic Protoporphyria		
°F	Fahrenheit degrees		
FFA	Free Fatty Acids		
FPP	Familial Periodic Paralysis		
FVC	Forced Vital Capacity		
GABA	Gamma-Aminobutyric Acid		
GBS	Guillain-Barre´ Syndrome		
GH	Growth Hormone		
H003	Bicarbonate		
ЮР	Hereditary Coproporphyria		
HEP	Hepatoerythropoietic Porphyria		
HIV	Human Immunodeficiency Virus		
HMB	Hydroxymethyl Bilane		
HMBS	Hydroxymethylbilane Synthase		
HyperPP	Hyperkalemic Form		
HypoPP	Hypokalemic Form		

<u>List of Abbreviations (cont.)</u>

Abbreviation	Meaning	
DP	Depolarization	
IC U	Intensive Care Unit	
ICUAW	ICU Acquired Weakness	
I g	Immunoglobulin Antibodies	
ĬŤ	Intensive Insulin Therapy	
IL 6	Interleukin-6	
iNOS	Inducible Nitric Oxide Synthase	
IVIG	Intravenous Immunoglobulin	
K +	Potassium	
Kg	Kilogram	
LEMS	Lambert-Eaton Myasthenic Syndrome	
LHRH	Luteinizing Hormone-Releasing Hormone	
LOS	Lipo-Oligosaccharides	
MDMA	Methylenedioxy-Methamphetamine	
MP	Maximal Expiratory Pressure	
MPP	Mniature End Plate Potential	
MG	Myasthenia Gravis	
MH	Malignant Hyperthermia	
MP	Maximum Inspiratory Pressure	
MOD	Mıltisystem Organ Dysfunction	
MRC	Medical Research Council	
MRSA	Methicillin-Resistant Staph Aureus	
msec	Mllisecond	
MV	Mechanical Ventillation	
mV	Mllivolt	
MAN	Motor Axonal Neuropathy	
MAPs	Motor Unit Action Potentials	
MP	Motor Unit Potentials	
MiSK	Mıscle Specific Tyrosine Kinase	
Na+	Sodium	
NGF	Nerve Growth Factor	

<u>List of Abbreviations (cont.)</u>

Abbreviation	Meaning
NMBA	Neuromuscular Blocking Agents
NM	Neuromuscular Junction
NMS	Neuroleptic Malignant Syndrome
NOS	Nitric Oxide Synthase
NT-3	Neurotrophin ³
02	Oxygen
PAS	Periodic Acid-Schiff
PBG	Porphobilinogen
PBGD	Porphobilinogen Deaminase
PCR	Polymerase Chain Reaction
PCT	Porphyria Cutanea Tarda
PE	Plasmapheresis Exchange
redox	Reduction/Oxidation
RMP	Resting Membrane Potential
ROS	Reactive Oxygen Species
RP	Repolarization
RRP	Relative Refractory Period
RyR	Ryanodine Receptors
Scv02	Oxyhemoglobin Saturation In Central Venous Blood
SEE	Series Hastic Hement
SFEMG	Single-Fiber Hectromyography
SIDP	Subacute Inflammatory Demyelinating Polyneuropathy
SIRS	Systemic Inflammatory Response Syndrome
sRNS	Slow Repetitive Nerve Stimulation
SS	Serotonin Syndrome
SSRIs	Selective Serotonin Reuptake Inhibitors
Sv02	Oxyhemoglobin Saturation In Mxed Venous Blood
TNF	Tumor Necrosis Factor
trk	Tyrosine Kinase
UN	Upper Limit Of Normal
VC	Vital Capacity
VP	Variegate Porphyria


List Of Tables

Item	Content	Page
Table (1):	Neurotrophins.	10
Table (2):	Classification Of Neuropathic Disorders.	21
Table (3):	Diagnosis Of Typical GBS.	29
Table (4):	Common Cardiovascular Complications Of GBS.	32
Table (5):	Features Of Guillain-Barre Syndrome.	32
Table (6):	Differences Between Myasthenia Gravis And Myasthenic Syndrome.	42
Table (7):	Types Of Porphyrias.	52
Table (8):	Frequency Of Signs And Symptoms In Acute Porphyria.	55
Table (9):	Criteria For ICUAcquired Weakness.	61
Table (10):	Medical Research Council Score.	62
Table (11):	Diagnostic Criteria For CIN.	62
Table (12):	Classification Of Myopathies.	65

Table (13):	Diagnostic Criteria For CIM	75
Table (14):	Common Drugs And Toxins That Induce Myopathies.	79
Table (15):	Causes Of Rhabdomyolysis.	81
Table (16):	Drugs Implicated In The Neuroleptic Malignant Syndrome.	88
Table (17):	Drugs That Can Produce The Serotonin Syndrome.	91
Table (18):	Conditions That May Mmic Guillain-Barre Syndrome.	93
Table (19):	Types Of Familial Periodic Paralysis.	99
Table (20):	Comparative Features Of Myasthenia Gravis And Guillain- Barré Syndrome.	102
Table (21):	Comparative Features Of Conditions Associated With ICU Acquired Neuromuscular Weakness.	112
Table (22):	Respiratory Consequences Of Neuromuscular Weakness.	136
Table (23):	Management Summary Of GBS During The Course Of Disease.	138
Table (24):	Cholinesterase Inhibitors And Their Dosages.	148
Table (25):	Drugs Considered Unsafe And Safe In Acute Intermittent And Variegate Porphyria And Hereditary Coproporphyria.	154
Table (26):	Treatment Of Acute Porphyrias.	157

List Of Figures

Item	Content	
Figure (1):	Various Stages Of AP.	5
Figure: (2)	The Neuromuscular Junction.	11
Figure (3):	A Simple Miscle Twitch.	19
Figure (4):	Immunobiology Of GBS.	27
Figure (5):	Miscle Action Potentials.	34
Figure (6):	Edrophonium Test.	39
Figure (7):	The Porphyrin-Heme Biosynthetic Pathway.	50
Figure (8):	Proposed Diagnostic Algorithm For Assessing Neuromuscular Complications In The Critically Ill.	77
Figure (9):	Pathogenesis Of Rhabdomyolysis.	84
Figure (10):	Force Transducers For Measurement Of Maximum Voluntary Contraction Strength.	117
Figure (11):	Measurement Of Evoked Contraction Of The Adductor Pollicis Miscle.	119
Figure (12):	Risk Factor Modification Schema For Patients At Risk For ICU-Acquired Weakness.	125
Figure (13):	Potential Mechanisms For The Induction Of Hyperglycemia In Critical Illness And Injury.	127

Contents

	Page
Introduction	1
Physiology of Nerve And Skeletal Miscle.	3
Neuropathy in ICU	21
Myopathy in ICU	65
Distinction Between Neuropathy and Myopathy.	93
Differential Diagnosis of Weakness	93
The Diagnostic Challenge: Distinguishing Critical Illness Myopathy From Critical Illness Polyneuropathy	108
General Management of Neuropathy and Myopathy	113
Assessment of Miscle Strength in The Intensive Care Unit	113
Management of ICU-AW (CIN And CIM)	125
Summary	164
References.	170
Arabic Summary.	

Physiology of Nerve

Neuron is the basic building block of the nervous system. Peripheral nerve trunks contain large numbers of independent nerve fibers that may be either afferent (sensory) nerve fibers that transmit nerve impulses from peripheral receptors to the nervous system or efferent (motor) nerve fibers that transmit nerve impulse from the nervous system to the effector organs. (Bannerjee, 2005)

Mechanism of Nerve Impulse Conduction:

· In unmyelinated nerve fibers:

Nerve impulses are propagated along unmyelinated nerve fibers in the form of waves of action potential (AP). The initial stimulus causes an AP at the point of stimulation. Local circular currents flow between the activated point and the neighboring inactive areas of the nerve membrane. Positive charges from the inactive areas flow into the initial area of negativity produced by the AP (area of current sink). This decreases the polarity at the inactive areas which produces an AP initiating to reach the firing level. The latter area, electrotonically depolarize the membrane in front of it through local circular currents, and this sequence of events moves regularly along the nerve fiber to its end. Therefore, the nerve impulse is self-propagated, and once it leaves a point, this point will soon repolarize, so propagation is unidirectional. (Vander et al, 2001)

· In myelinated nerve fibres:

Nerve impulses are propagated along myelinated nerve fibers by salutatory conduction. The insulator myelin sheath surrounds the nerve axon is interrupted at regular intervals at the nodes of Ranvier. Circular currents also flow in myelinated nerve fibers, but the +ve charges jump from the inactive nodes to the area of current sink at the active node bypassing the myelin segments. This leads to electrotonic depolarization and production of an AP at the

inactive nodes, which in turn activates the neighboring nodes. This results in increasing the velocity of conduction and conservation of energy. (Costanzo, 2006)

Factors That Determine the Effectiveness of stimuli:

A. Intensity (strength) of the stimulus.

B. Rate of increase in the intensity of stimuli; If the intensity is increased slowly, the nerve will not respond because of the property of accommodation.

C. Duration of stimulus (duration of current flow).

There is a reciprocal relationship between the current strength and the duration of flow required to produce an impulse.

(Guyton & Hall, 2006)

The Resting Membrane Potential (Rmp):

In resting nerves, the outer surfaces are + ve and the inner surfaces are -ve, with a potential difference about -70 mV. The membrane is in the polarized state. The RMP is due to an unequal distribution of ions on both sides of the cell membranes with relatively excess cations outside (mainly Cl" and HCO3') and excess anions inside (mainly negatively charged organic proteins) due to selective permeability of cell membranes (permeability to K⁺ is 50-100 times greater than that to Na⁺). The diffusion of ions across cell membranes occurs according to both their concentration and electrical gradients, so Na⁺ ions tend to diffuse inside the cells while K⁺ ions tend to diffuse outside the cells, but this is limited due to the low permeability of the cell membranes to Na⁺ and Na⁺-K⁺ pump in the resting state. Some ion channels are voltage-gated (i.e. controlled by the present potential), while others are ligandgated (i.e. controlled by certain chemical substances). The Na⁺ - K⁺ pump pumps 3 Na⁺ out of the cell and transports only 2 K⁺ ions into the cell against both concentration and electrical gradients which needs energy provided from breakdown of ATP by Na^+ - K^+ ATPase enzyme. (Vander et al, 2001)

Nerve Changes upon Propagation of the Nerve Impulse:

A. Electric Changes (The Action Potential (Ap):

The changes in potential that occur in excitable nerve fibers when stimulated is transmitted as a self-propagated disturbance known as the nerve impulse. Stimulating the nerve is followed by an isopotential latent period then depolarization, repolarization, after-depolarization and after-hyperpolarization (figure 1).

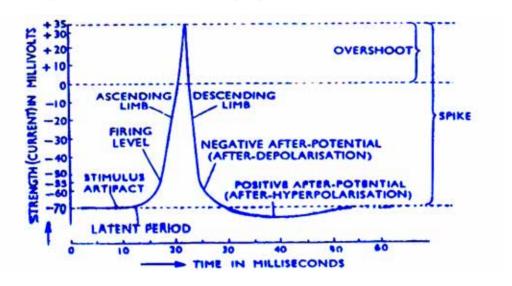


Figure (1): Various stages of AP. (Bannerjee, 2005)

• **Depolarization (DP):** This is loss of the normal resting polarized state of the membrane. It is recorded as a rise of the membrane potential in the positive direction from -70 mV towards zero potential producing the ascending limb of the A.P. Such process occurs in steps as follows: DP develops slowly, but after the membrane potential becomes about -55 mV) the rate of DP