STUDIES ON SOME SYMBIOTIC BACTERIA OF SOME ENTOMOPATHOGENIC NEMATODES

By

GEHAN MOHAMED SAYED AHMED

B. Sc. Agric. Sci., (Biotechnology), Fac. Agric., Cairo Univ., 2004

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Agricultural Microbiology)

Department of Agricultural Microbiology
Faculty of Agriculture
Cairo University
EGYPT

APPROVAL SHEET

STUDIES ON SOME SYMBIOTIC BACTERIA OF SOME ENTOMOPATHOGENIC NEMATODES

M. Sc. Thesis In Agric. Sci. (Agricultural Microbiology)

By

GEHAN MOHAMED SAYED AHMED

B. Sc. Agric. Sci., (Biotechnology), Fac. Agric., Cairo Univ., 2004

APPROVAL COMMITTEE

Dr. El SHAHAT MOHAMED RAMADAN Professor of Agricultural Microbiology, Fac. Agric., Ain Shams University
Dr. MICHAEL REZKALLAH GOHAR
Professor of Agricultural Microbiology (Emeritus), Fac. Agric., Cairo University
Dr. WALEED DIAEDDEEN SALEH
Associate professor of Agricultural Microbiology, Fac. Agric., Cairo University.
Dr. MOHAMED ABDEL-ALIM ALI
Professor of Agricultural Microbiology, Fac. Agric., Cairo University

Date: / / 2013

SUPERVISION SHEET

STUDIES ON SOME SYMBIOTIC BACTERIA OF SOME ENTOMOPATHOGENIC NEMATODES

M. Sc. Thesis
In
Agric. Sci. (Agricultural Microbiology)

By

GEHAN MOHAMED SAYED AHMED

B. Sc. Agric. Sci., (Biotechnology), Fac. Agric., Cairo Univ., 2004

SUPERVISION COMNITTEE

Dr. MOHAMED ABDEL-ALIM ALI

Professor of Agricultural Microbiology, Fac. Agric., Cairo University

Dr. WALEED DIAEDDEEN SALEH

Associate Professor of Agricultural Microbiology, Fac. Agric., Cairo University

Dr. AHMED MOHAMMED AZAZY

Chief Researcher of Pest Physiology Department. ARC, Giza

Name of Candidate: Gehan Mohamed sayed Ahmed Degree: M. Sc.

Title of Thesis: Studies on Some Symbiotic Bacteria of Some

Entomopathogenic Nematodes

Supervisors: Dr. Mohamed Abdelalim Ali

Dr. Waled Diaeddeen Saleh Dr. Ahmed Mohamed Azazy

Department: Agricultural Microbiology.

Approval: 4 / 8 / 2013

ABSTRACT

In this work, Xenorhabdus spp and Photorhabdus spp. were isolated from a local nematode strain Steinernema sp., Heterorahbitids sp., a foreign Heterorahbitids sp, a foreign well-identified strain, i.e., Steinernema riborvae and *Heterorahbitids indica* kindly supplied by Florida State University, USA. The identity of the isolated bacteria was authenticated referring to their cultural, morphological and biochemical traits as well as to their entomopathogenicity against Galleria mellonella, Agrotis ipsilon, Spodoptera littoralis and Rhynchophorus ferrugineus. The 16S rRNA technique was adopted for conclusive identification of two Xenorhabdus spp strains and three *Photorhabdus* spp. The antagonistic properties of the isolated Xenorhabdus spp and Photorhabdus spp. isolates were studied in submerged batch fermentations . Five periods were tested for selection of the ideal time of *Photorhabdus* sp. (xH1, xHi and xH2), *Xenorhabdus* sp. (xSr and xS1) to give their maximum antibiotic activity using four different fermentation media using the Disc Diffusion Technique. Five Xenorhabdus spp and Photorhabdus spp. strains showed various antimicrobial activities against wide spectra of Gram +ve, Gram -ve bacteria as well as yeasts. Oral administration of cell-free culture supernatants of *Xenorhabdus* spp. isolates exhibited high levels of toxicity against Agrotis ipsilon and Spodoptera littoralis. All toxins achieved high mortality within 72h after treatment. Histopathological effect of *Xenorhabdus* spp and *Photorhabdus* spp strains on the midgut of Spodoptera littoralis was examined.

Key words : *Xenorhabdus* spp., *photorhabdus* spp., oral toxicity, antimicrobial activities.

DEDICATION

I dedicate this work to whom my heartfelt thanks; to my father, my mother, Dr. Olfat, my dear mai, my sisters, my brothers and my friends for their patience, help and for all the support they lovely offered along the period of my post graduation.

ACKNOWLEDGEMENT

Praise and thanks be to ALLAH, for assisting and directing me to the right way.

I wish to express my sincere thanks, deepest gratitude and appreciation to **Dr. Mohamed. A. Ali** Professor of Agricultural Microbiology; **Dr. Waleed. D. Saleh,** Associate Professor of Agricultural Microbiology, Faculty of Agriculture, Cairo University and **Dr. Ahmed, M. Azazy,** Chief Researcher of Nematology, Pest Physiology Department, Plant Protection Research Institute. ARC, Giza, for suggesting the problems, supervision, continued assistance and their guidance through the course of study and revising the manuscript.

Deep appreciation is given to **Dr. Olfat, S. Barakat,** Professor of Agricultural Microbiology, Fac. Agric., Cairo University, for suggesting the problems, continued assistance and her guidance and support.

Grateful appreciation is also extended to all staff members and colleagues in the Department of Pest Physiology Department, Plant Protection Research Institute. ARC, Giza.

CONTENTS

INTRODUCTION	
REVIEW OF LITERATURE	
1. Entomopathogenic nematodes and their	
microsymbionts	
2. Xenorhabdus life cycle	
3. Xenorhabdus scientific classification	
4. Photorhabdus luminescens lifecycle	
5. Photorhabdus luminescens Scientific classification	
6. Bioinsecticidal properties of <i>Xenorhabdus</i> an <i>Photorhabdus</i>	
7. Antagonistic capabilities of Photorhabdus and	nd
Xenorhabdus	
MATERIALS AND METHODS	
1. Mcroorganisms	
2. Insects	
3. Nematodes	
4. Cultural Media	
5. Chemicals	
6. Equipments	
METHODES	
1. Rearing Techniques	
2. Isolation and characterization of Xenorhabdus and Photorhabdus	nd
3. Molecular characterization of bacterial isolates	
4. Antagonistic properties of <i>Xenorhabdus</i> spp as <i>Photorhabdus</i> spp. strains	
5. Entomopathogenic capabilities of <i>Xenorhabdus</i>	
and Photorhabdus spp strains	
6. Foliar application of <i>Photorhabdus</i> sp. an	
Xenorhabdus sp.	
7. Chemical determinations	
8. Histopathological effect of <i>Xenorhabdus</i> spp an	
Photorhabdus spp strains	
9. Statistical Analysis	

RESULTS AND DISCUSSION	
1. Isolation and Identification of Xenorhabdus spp and	
Photorhabdus spp	
2. Molecular characterization of bacterial strains	
3. Antagonistic properties of Xenorhabdus sp and	
Photorhabdus spp. strains	
a. Antagonistic activities of EPN strains as affected by	
fermentation period	
b. Antagonistic activities of EPN strains as affected by	
the type of culture medium	
c. Antagonistic activities of EPN strains as affected by incubation temperature	
d. Antagonistic activities of EPN strains as affected by	
different carbon sources	
e. Antagonistic activities of EPB strains as affected by	
culture pH	
4. Oral toxicity of bacterial cell-free supernatant	
against A. ipsilon, S. littoralis and Rhynchophorus	
ferrugineus	
5. Foliar application of <i>Photorhabdus</i> spp. and	
Xenorhabdus spp. against Spodoptera littoralis	
6. Protein content, proteolyic and lipolytic activities of	
EPB	
a. Proteolytic activities of the EFB strains	
b. Lipolytic activities of EPB strains	
7. Histopathological effect of <i>Xenorhabdus</i> spp and	
Photorhabdus spp strains on the midgut of	
Spodoptera littoralis	
SUMMARY	
REFERENCES	
ARABIC SUMMARY	

LIST OF TABLES

No.	Title	Page
1	Xenorhabdus and Photorhabdus species and their nematode symbionts	28
2	Components (g/l) of the cultural media used in submerged fermentation batches for toxin production by <i>Xenorhabdus</i> sp	30
3	Biochemical characters of <i>Xenorhabdus</i> spp and <i>Photorhabdus</i> spp.	44
4	Three way ANOVA Completely Randomized	59
5	Three way ANOVA Completely Randomized	63
6	Three way ANOVA Completely Randomize	68
7	Two way ANOVA Completely Randomized	75
8	Two way ANOVA Completely Randomize	81
9	Total protein content (µgml ⁻¹) in <i>Xenorhabdus</i> spp and <i>Photorhabdus</i> spp. culture supernatants	82
10	Determination of protease in <i>Xenorhabdus</i> spp and <i>Photorhabdus</i> spp	84
11	Lipolytic activiries of EPB strains	85

LIST OF FIGURES

No.	Title	Page
1	Xenorhabdus life cycle	6
2	The representation of complex life cycle of <i>Photorhabdus</i> luminescens	8
3	Bovine serum albumin standard curve	39
4	Lipase standard curve	40
5	Bovine serum albumin standard	41
6	PCR amplification of 16s rRNA	45
7	Diameters of growth inhibition zones produced by cell-free supernatants of <i>Photorhbdus</i> . Sp (xH2) culture in 4 different media against eight test-microorganisms.	52
8	Diameters of growth inhibition zones produced by cell-free supernatants of <i>Photorhbdus</i> . Sp (xH1) culture in 4 different media and eight test-microorganisms	53
9	Diameters of growth inhibition zones produced by cell-free supernatants of <i>Photorhbdus</i> . Sp (xHi) culture in 4 different media and eight test microorganisms	54
10	Diameters of growth inhibition zones produced by cell-free supernatants of Xenorhabdus. Sp (xSr) culture in 4 different media and eight test-microorganisms.	55
11	Diameters of growth inhibition zones produced by cell-free supernatants of <i>Xenorhabdus</i> . Sp (xS1) culture in 4 different media and eight test-microorganisms	56

12	Effect of different Temperature on antibiotic activity using different eight testers.	
13	Effect of different carbon sources on antibiotic activity using different eight testers.	
14	Effect of different pH sources on antibiotic activity using different eight testers.	
15	Moralitiy of Agrotis ipsilon	
16	Moralitiy of Spodoptera littoralis	
17	Morality of Rhynchophorus ferrugineus	
18	Morality of Spodoptera littoralis	
19	Internal structure of cotton leaf worm in gp-1 showing the normal histological structure of the fore and mid guts with empty lumen	
20	Internal structure of cotton leaf worm in gp-1 showing the lining epithelium of the gut	
21	Internal structure of cotton leaf worm in gp-1 showing the magnification of the liming epithelium in the mid gut	
22	Internal structure of cotton leaf worm in gp-1 showing the magnification to identify the basophilic tall nuclei of the lining epithelium of the gut (m)	
23	Hyalinization in the covering surface layer	
24	Hyalinization with lose of pigmentation were detected in the outer surface	
25	Obstruction in the gut between the for and mid one	
26	associated with appearance of deep eosinophilic coloration in the most of the lining cells of the mid gut	
27	associated with appearance of deep eosinophilic coloration in the most of the lining cells of the mid gut	

28	Obstruction was detected in the gut between the for and mid one	92
29	associated with appearance of goblet cells formation	92
30	A deep eosinophilia in some cells in focal manner	92
31	The lining epithelium of the gut showed deep eosinophilic cytoplasm with lose of the nuclei	93
32	the lining epithelium of the gut showed deep eosinophilic cytoplasm with lose of the nuclei	93
33	Desquamation in the lining epithelium of the gut	94
34	Goblet cells formation in massive manner	94

INTRODUCTION

The indiscriminate use of agrochemicals in intensive agriculture causes a global serious environmental problem. Many pesticides survive in plants for long periods, enter the food chain, and so can be detected at high levels in many feed and food crops, meat, and dairy products. Such environmental pollution hazard with profound effects on human health is severe in developing rather than developed countries. Many bacterial and fungal bioinsecticides are commercially available for use in biological control of wide spectra of plant pests; however, exploring new biological control agents is badly needed. Among bacterial bioagents are the Gram-ve bacteria Photorhabdus sp. and Xenorhabdus sp.; the microsymbionts of the entomopathogenic soil nematodes from the families *Heterorhabditis* and *Steinernema* (Forst et al., 1997). These bacteria produce insecticidal factors critical for their pathogenic activities against insects (ffrench-Constant et al., 2007). The nematodes enter the openings of the insect body, such as the mouth, spiracle, or anus where nematodes regurgitate bacteria, which are housed in a vesicle of their intestine, directly into the hemocoel (Ciche and Ensign, 2003). The bacteria produce a range of proteins and metabolites which kill the insect host (Bowen et al., 1998). Both nematodes and bacteria replicate in the insect cadaver (Ffrench-Constant et al., 2003). Photorhabdus and Xenorhabdus bacteria can be isolated from the infective juvenile nematodes that carry them or from the infected insect cadaver. They can be in vitro cultured as free living without hosts under laboratory conditions (Forst et al., 1997). The bacteria secrete entomopathogenic factors directly into the growth medium. Interestingly, these bacteria or their toxic factors are insecticidal when they are ingested through the insect mouth or when injected into the hemolymph (Ffrench- Constant et al., 2003). Oral toxicity of *Photorhabdus luminescens* and *Xenorhabdus luminescens* was reported to be lethal to Manduca sexta larvae (Blackburn et al., 1998). Cells and their secreted proteins of *Xenorhabdus nematophilus* were described as orally toxic to neonatal larvae of Helicoverpa armigera (Khandelwal and Banerjee-Bhatnagar, 2003). A possible exploitation of Xenorhabdus and Photorhabdus as microbial biopesticides in agriculture was adopted by Ffrench-Constant et al. (2007). However, there is no much data on the insecticidal capabilities of native entomopathogenic nematodes and their microsymbionts isolated from the Egyptian soils and it is desirable to study the native potential biocidel characteristics of the entomopathogenic nematodes and their microsymbionts.

In this work, it was planned to isolate *Xenorhabdus* and *Photorhabdus* from their nematode symbionts and study their cultural, morphological, biochemical and molecular characteristics. Using two insect genotypes, an experiment was conducted for studying the oral toxicity of *Xenorhabdus* and *Photorhabdus* cultures as well as the activity of their cell-free filtrates on nematode and insect host. Furthermore, the antagonistic activities of these bacteria were *in vitro* examined against some microorgansms.

REVIEW OF LITERATURE

1. Entomopathogenic nematodes and their microsymbionts

Burnell and Stock (2002) reported that the entomopathogenic nematodes (EPN) *Heterorhabditis* and *Steinernema* together with their symbiont bacteria *Photorhabdus* and *Xenorhabdus*, respectively, are obligate and lethal parasites of insects. EPN can provide effective biological control of some important lepidopteran, dipteran and coleopteran pests of commercial crops and they are amenable to large-scale culture in liquid fermentors. They are unique among rhabditidsin having a symbiotic relationship with an enteric bacterium species. The bacterial symbiont is required to kill the insect host and to digest the host tissues, thereby providing suitable nutrient conditions for nematode growth and development.

Mathieu *et al.* (2006) showed that *Xenorhabdus* symbionts modified the competition between their *Steinernema* associates. This suggests that *Xenorhabdus* not only provides *Steinernema* with access to food sources but also furnishes new abilities to deal with biotic parameters such as competitors.

Stock *et al.* (2008) decoumented that Entomopathogenic nematodes *Steinernema* and *Heterorhabditis* spp.(Nematoda:

Steinernematidae, Heterorhabditidae) and their bacterial symbiont Xenorhabdus and Photorhabdus spp.Gram-negativeEnterobacteriaceae represent an emerging model of terrestrial animal-microbe symbiotic relationships. Xenorhabdus and Photorhabdus spp. are harbored as