Circumferential cricotracheal resection with end to end anastomosis versus cricoid collar technique for the management of severe laryngotracheal stenosis: A comparative study

Thesis

Submitted in partial fulfillment of MD Degree in Otorhinolaryngology

By:

Dr. Bassem Adel Dawoud

(M.B.B.Ch.- M.Sc- Cairo University)

Supervisors

Dr. Ahmed El Salmawy

Professor of Otorhinolaryngology Cairo University

Dr. Abd El Haliem Ahmed

Professor of Otorhinolaryngology Cairo University

Dr. Mohamed Mosleh

Assistant Professor of Otorhinolaryngology Cairo University

> Faculty of Medicine Cairo University 2010

Acknowledgment

First of all thanks to **God** the most merciful and gracious

I wish to express my respect and unlimited gratitude to Prof. Dr.

Ahmed El Salmawy, professor of otorhinolaryngology, faculty of

medicine, Cairo University for his idea about this research and guidance

that make that work attain its shape.

I am greatly indebted to Prof. Dr. Abd El Haliem Ahmed,

professor of otorhinolaryngology, faculty of medicine, Cairo University

for his keen advice and sincere guidance and for helping me throughout

preparation of this work.

I would like to express my appreciation to *Dr.Mohamed Mosleh*,

assistant professor of otorhinolaryngology, faculty of medicine, Cairo

University for his unlimited assistance, patience and enthusiasm

throughout this work.

Bassem Adel Dawoud

2010

Abstract

This is a prospective study which compares the efficacy of cricotracheal resection (CTR) with end-to-end anastomosis and cricoid collar technique in severe laryngotracheal stenosis. 23 patients were selected and arranged into 2 groups from 2007 to 2010. All patients were Cotton's grade 3 or 4 and McCaffrey stage III. Group I (17 patients) underwent CTR while group II (6 patients) were operated with the collar technique. All patients underwent laryngeal release procedures. 15 patients (88.2%) were successfully decannulated in group I whereas only one patient (16.7%) was decannulated in group II. Postoperative cord paralysis was noted in 3 patients of group I and in one patient of group II. CTR is the procedure of choice for severe laryngotracheal stenosis rather than cricoid collar owing to its high decannulation rate and fewer complications.

<u>Key words</u>: laryngotracheal stenosis – resection anastomosis – collar technique

Contents

Introduction	I
Review of literatures	
Chapter I : Basic consideration	2
Chapter II : assessment and classification	17
 Clinical assessment 	17
 Investigation 	19
 Classification 	24
Chapter III: Surgical Treatment	27
o Closed	
Dilatation	28
Endoscopic laser	29
 Laryngotracheal stenting 	32
o Open	
Cricoid splitting procedures	39
Laryngotrachoplasty	38
 Vascularized myo-osseous flap 	44
Slide tracheoplasty	45
 Tracheal transplantation 	47
 Partial cricotracheal resection 	48
 Cricoid Collar technique 	64
Patients & Methods	65
Results	73
Discussion	82
Conclusion	94
Reference	95
Arabic summary	112

Illustrations

Figure	Title	Page
Fig 1	Anatomy of the larynx and trachea	4
Fig 2(A)	Immunohistochemical image taken demonstrating loss	14
	of aggrecan at the fracture site.	
Fig 2(B)	Confocal microscopic image of cartilage ring of grossly	14
	normal caliber from the same specimen	
Fig 3(A)	Immunohistochemical image taken demonstrating	14
	preservation of collagen II at the fracture site.	
Fig 3(B)	Confocal microscopic image of cartilage ring of grossly	14
	normal caliber from the same specimen.	
Fig 4	Histological section demonstrates remnants of ciliated	16
	epithelium; the partly denuded soft tissue contains	
	massive fibrous tissue, a mixed inflammatory infiltrate	
	with lymphoid aggregates and dilated cystic structures	
Fig 5	Microfissures and indentations with macrophages in the	16
	microfissures	
Fig 6	Peripheral Cutting Balloon	29
Fig 7	Shapshay technique	30
Fig 8(A)	Axial (top) and sagittal (bottom) views of semicircular	31
	resection, not extending past half of tracheal	
	circumference.	
Fig 8(B)	Submucosal tissue has been resected, preserving	31
	overlying mucosa. Dotted line represents flap incision at	
	10 o'clock.	
Fig 8(C)	Two flaps are rotated to partially cover raw surfaces. In	31
	2 months, the opposite side will be addressed in an	
	identical manner and the process will be repeated until	

	the disease stabilizes.	
Fig. 9	Stent on the tip of the delivery catheter and after	32
	complete expansion.	
Fig. 10	The T-tube is inserted with a stenting endotracheal tube	34
	from the horizontal limb. After appropriate placement of	
	the T-tube, an anesthetic tube is inserted to ventilate the	
	patient	
Fig. 11	Easy-Mold laryngotracheal stent	35
Fig. 12	Balloon expandable stent	36
Fig 13(A)	Postoperative endoscopic view of the larynx 2 years	37
	after the procedure with interarytenoid muscle divided.	
	The arrow indicates the buccal mucosa grafted.	
Fig 13(B)	A buccal mucosa graft covering the area between the	37
	separated posterior cricoid halves.	
Fig 14	Anterior and posterior cricoid splitting	40
Fig 15	Lt: anterior graft sewn in position, Rt: horizontal section	40
	showing the position of anterior and posterior grafts.	
Fig 16	Prefabrication is created in 1 st stage	44
Fig 17	Bioreactor to preconditionate and prefabricate new	44
	shaped composite grafts	
Fig 18	Slide tracheoplasty	46
Fig 19	The proximal half is split anteriorly, and distal half is	47
	split posteriorly. The corners are spatulated and proximal	
	half is slid posteriorly into distal half	
Fig 20	Geometric representation of the oblique anastomosis in	47
	slide tracheoplasty	
Fig 21	Partial cricotracheal resection. Incision of the cricoid	50
	cartilage anterior to cricothyroid joint	

Fig. 22	A subperichondrial flap in lateral aspects of the cricoid	
	cartilage to protect recurrent laryngeal nerves	
Fig 23	Anastomotic technique	53
Fig 24(A)	Pedicle mucosal flap	57
Fig 24(B)	flap cover remaining cricoid	57
Fig 25	The partial inferior midline thyrotomy, the thyroid alae	62
	are spread apart to increase the subglottic lumen.	
Fig 26	A) Resection of stenotic segment	64
	B) Advancement of the trachea into splitted cricoid	
Fig 27	Laryngotracheal stensis extending from subglottic area	67
Fig 28	Collar cervical incision around tracheostomy	68
Fig 29	Subperichondrial dissection	69
Fig 30	Dissection of stenotic segment	69
Fig 31	Interrupted inverted sutures	71
Fig 32	Re-inforcement sutures	71
Fig 33	Advancement of trachea into splitted cricoid cartilage	72
Fig 34	Resection of anterior, rim of posterior arch of cricoids	74
Fig 35	The stenotic segment after removal	74
Fig 36	Chart of Cricotracheal resection versus collar technique	81

TABLES

TABLE 1: Causes of adult laryngeal and tracheal stenosis	6
TABLE 2: Grading Systems for Subglottic Stenosis	24, 66
TABLE 3: staging of laryngotraheal stenosis	25, 66
TABLE 4: Series of tracheal resections from literature	59
TABLE 5: Preoperative description of patient's parameters in CTR	. 76
TABLE 6: Descriptive analysis of variables for CTR	77
TABLE 7: Operative description of CTR	77
TABLE 8: Postoperative description of CTR	77
TABLE 9: Preoperative parameters of patient's in Collar technique	79
TABLE 10: Operative description of Collar technique	80
TABLE 11: Descriptive analysis of variables for Collar technique	80
TABLE 12: Postoperative description of Collar technique	80

Abbreviation

SGS	subglottic stenosis
PGS	posterior glottis stenosis
IPSS	Idiopathic progressive subglottic stenosis
ILS	idiopathic laryngeal stenosis
PDT	percutaneous dilatational tracheotomy
ACF	arytenoids cartilage fixation
RLNP	recurrent laryngeal nerve paralysis
LTP	Laryngotracheoplasty
LTR	Laryngotracheal reconstruction
PDS	polydioxanone suture
Nd-YAG	neodymium:yttrium-aluminum-garnet
LTF	larynotracheal fistula
CTR	partial cricotracheal resection
GERD	Gastroesophageal reflux disease

Introduction

The laryngotracheal stenosis is a major sequel that affects the cricoid cartilage and the trachea due to many causes, the most frequently encountered is the prolonged intubation. The stenosis of this narrow area of the airway manifests rapidly as stridor that affects the patient's quality of life.

There are many classifications designed to determine the degree and the extent of the stenosis. They also consider the associated medical illness of patients and the outcome of surgery for breathing and voice production.

Surgery to this particular problem remains challenging which attract the attention of many ENT and cardiothoracic surgeons.

Some surgeons advocate the open reconstructive procedures as the treatment of choice to preserve the airway. While others suggest that the closed endoscopic approaches are still successful with minimal surgery especially since the introduction of laser in endoscopic laryngeal surgery. However both procedures could not achieve the high success rate among all patients especially the group of advanced larygotracheal stenosis.

Cricotracheal resection is a challenging procedure that completely eradicates the problem of stenosis with least morbidity. There is an ongoing high success rate of it in different age groups of patients. Surgeons become more familiar with this technique which gradually substitutes other reconstructive procedures.

Cricoid collar is a recent technique that combines the benefits of reconstruction with protection of the recurrent laryngeal nerve and the complete resection of stenosis. The aim of this study is to evaluate and compare the success rate of decannulation and postoperative complications of the patient between cricotracheal resection and cricoid collar technique.

Chapter I

BASIC CONSIDERATION

The larynx is commonly referred to as the "voice box". The larynx is responsible for three basic functions; protection of the trachea and the lungs from food and fluids as well as permitting the passage of air into the respiratory system and vital structure in the production of sound. Nine various cartilages create the structure of the larynx. Three of them are large and unpaired while the remaining are small and paired. The anterior thyroid cartilage is the largest of the framework. The "Adam's apple" is a prominent point of this structure, created by the vertical anterior ridges of the laryngeal cartilage. This particular cartilage is affected by the hormones of the male and tends to become more prominent in males than in females (Sasaki and Isaacson, 1988).

The larynx begins to develop around the fourth week of development. It begins as an outgrowth from the ventral portion of the primitive pharynx called the laryngotracheal groove, also known as the foregut. The laryngotracheal groove also helps to form the primitive opening of the larynx, or aditus. The aditus is composed of 3 structures; the hypobranchial eminence which is the most cephalic part and develops into the epiglottis and the lateral 2 eminences that develop into the arytenoid cartilages (*O'Rahilly and Boyden*, 1973).

Epithelialization causes the laryngeal lumen to obliterate; the lumen recanalizes later by the 10th week of gestation and forms the laryngeal ventricles and both true and false vocal cords. Failure of complete recanalization results in laryngeal web or subglottic stenosis. The diameter of subglottic region in full-term newborn is more than 4 mm (*Verwoerd-Verfoef et al.*, 1997).

It is suggested that the lateral growth centers may be of significance only during embryonic development. There have been recent studies in the rabbit model demonstrating that a transection of the lateral cricoid cartilage does not impair growth of the cricoid cartilage in a multidirectional manner (*Ward and Triglia*, 2000).

The cricoid cartilage is the only complete cartilaginous ring present in air passages. It is composed of a deep broad quadrilateral lamina posteriorly, and a narrow arch anteriorly. Near the junction of the arch and lamina an articular facet is present for inferior cornu of thyroid cartilage. The lamina has slopping shoulders which carry articular facets for the arytenoids. These joints are synovial with capsular ligaments. Rotation of the cricoid cartilage on thyroid cartilage can take place about an axis passing transversely through joints. A vertical ridge in the midline of the posterior lamina gives attachment to the longitudinal muscles of the oesophagus and produces a shallow concavity on each side for the origin of posterior cricoarytenoid muscle (*Stell et al.*, 1980).

The entire surface of cricoid is covered with mucous membrane. The lower part of laryngeal cavity is called the subglottis and extends from lower border of the vocal folds to lower border of the cricoid cartilage. Its upper part is elliptical in form, but its lower part widens and become circular in shape and continuous with the trachea (*Eckel et al*, 1999).

The trachea is a cartilaginous and membranous tube about 10-11 cm in length. There are 16-20 incomplete cartilaginous rings. Cross section is D-shaped. The rings are deficient posteriorly and completed by a fibrous membrane. It extends from the lower border of the cricoid cartilage at level of the sixth cervical vertebra to the bifurcation at the

upper border of the fifth thoracic vertebra or second costal cartilage or manubriosternal angle. Bifurcation moves upwards during swallowing and downwards and forwards during inspiration to the level of sixth thoracic vertebra. The trachea lies in the midline although the bifurcation is slightly to the right. The diameter increases during inspiration and decreases during expiration. In children the trachea is smaller deeply placed and more mobile than in adults. The bifurcation is higher in children than adults until the age of 10-12 years (*Vanpeperstraete*, 1973).

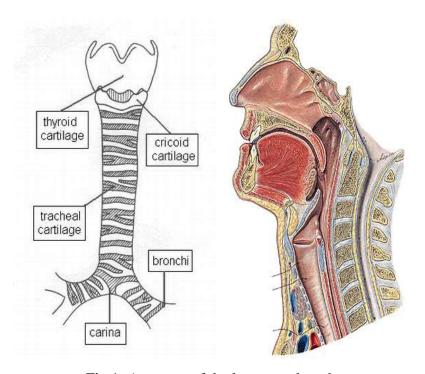


Fig 1: Anatomy of the larynx and trachea

The fibrous membrane covering the trachea is the continuation of perichondrium surrounding the cartilage. These fibers cross each other diagonally allowing changes in the diameter of the airway. A non-striated muscle is present within the fibrous membrane, mostly transverse called "trachealis" which allows alteration of cross-sectional area of the trachea and bronchi (*Neil Weir*, 1997).

Minnich and Mathisen (2007) demonstrated relation of the trachea to the surrounding where the central part of the trachea is covered

anteriorly by skin, superficial and deep fascia, sternohyoid and sternothyroid muscles. The isthmus of the thyroid gland usually covers the second to the fourth rings. In the lower part of neck, it is crossed by a communicating band between anterior jugular veins, as well as inferior thyroid veins and thyroid ima artery – if present – which ascends from arch of aorta or brachiocephalic artery. The right and left lobes of thyroid gland which descend to level of fifth or sixth tracheal cartilages lie on either side of the trachea, as does the carotid sheath enclosing the common carotid artery, internal jugular vein, and vagus nerve. The inferior thyroid artery lays anterolaterally.

The oesophagus lies behind trachea with recurrent laryngeal nerve lying in a groove between them. The recurrent laryngeal nerve on the right side leaves the vagus nerve as it crosses right subclavian artery. It then loops under the artery and ascends to the larynx in a groove between the oesophagus and trachea. On the left side, nerve originates from the vagus as it crosses the arch of aorta. It then passes under the arch and ligamentum arteriosum to reach groove between oesophagus and trachea. In the neck, both nerves follow the same course and pass upwards accompanied by the laryngeal branch of inferior thyroid artery, deep to the lower border of inferior constrictor. It enters the larynx behind the cricothyroid joint. The nerve then divides into motor and sensory branches. The motor branch has fibers derived from cranial accessory nerve with cell bodies in the nucleus ambigus; these supply all intrinsic muscles of larynx except the cricothyroid muscle. The sensory branch supplies mucous membrane below the vocal folds and also carries afferent fibers from stretch receptors in the larynx. As it ascends in the neck, it gives branches - which are numerous on right than left - to mucous membrane and muscular coat of oesophagus (Neil Weir, 1997).