Physicochemical Investigation of Some Antidiabetic Compounds

A thesis submitted to, Chemistry Department, Faculty of Science, Cairo University.

For The PhD Degree

By
INAS MOHAMED MAHDI

(B.SC., Cairo University)
(M.SC., Cairo University)

Faculty of Science, Cairo University Egypt.

2009

دراسات فيزيقوكيميائية لبعض مركبات علاج السكر

رسالة مقدمة إلى قسم الكيمياء- كلية العلوم جامعة القاهرة

للحصول على درجة دكتور الفلسفة في العلوم

من البناس محمد مهدي عبد الله بكالوريوس علوم"كيمياء" كلية العلوم- جامعة القاهرة ماجستير علوم" كيمياء لا عضوية" كلية العلوم- جامعة القاهرة

Approval Sheet for submission

m·. 1	CDID	mı .	
TITIO	At Phi	Thesis	10.
TILL	עוו ווט	1110313	13.

"Physicochemical Investigation of Some Antidiabetic Compounds"

Name of the candidate: Inas Mohamed Mahdi

This thesis has been approved for submission by the supervisors:

- 1) Prof. Dr. Mohamed Waheed El-Deen Abdallah Badawy Signature:
- 2) Prof. Dr. Mohamed Abd-Elnaby El-Ries Signature:

Prof. Dr.

Chairman of chemistry Department Faculty of Science-Cairo University

Physicochemical Investigation of Some Antidiabetic Compounds ${\it Abstract}$

Simple and rapid potentiometric, voltammetric and chromatographic methods for the determination of some noninsulinic drugs; namely, rosiglitazone, pioglitazone, glimepiride and glyburide, in their pure standards and as pharmaceutical dosage were studied. The fundamental optimum conditions of each method were investigated. The tested antidiabetic drugs could be determined potentiometrically in the concentration range 10⁻²-10⁻⁶ M with reasonable life span at carbon paste and polyvinyl chloride membrane electrodes as sensitive sensors. Also a well defined irreversible and diffusion controlled anodic beak was obtained for each of the tested drugs using the voltammetric technique. The carbon paste discs and glassy carbon electrodes show linear response in the concentration range (10⁻³-3.5x 10⁻⁶ M) in the differential pulse voltammetry. Also, the developed HPLC methods were efficiently isocratically separated the tested drugs on Agilant octadecyl silica C₁₈ 15 cm column at a flow rate of 1.5 mL/min, and 25°C. The detection wavelength was 215 nm for rosiglitazone and 280 nm for pioglitazone, glimepiride and glyburide. Good calibration curves were obtained in the concentration range (10⁻³-10⁻⁶ M). The results of these investigations were compared with those of the reference HPLC method. The investigated methods were fairly good and compared to the reference method.

Key words: noninsulinic drugs; carbon paste; glassy carbon; PVC, HPLC.

Supervisors:

- 1) Prof. Dr. Mohamed Waheed El-Deen Abdallah Badawy Signature:
- 2) Prof. Dr. Mohamed Abd-Elnaby El-Ries <u>Signature:</u>

Contents:

List of Figures

List of tables

Summary

1. Introduction	1
1.1. Overview of the published methods for the determination of	2
rosiglitazone, pioglitazone, glimepiride and glyburide	2
1.1.1. Rosiglitazone	2
1.1.2. Pioglitazone	6
1.1.3. Glimepiride	10
1.1.4. Glyburide (Glibenclamide)	13
1.2. Overview of the electrochemical methods	23
1.2.1. Potentiometric measurement	23
1.2.2. Voltammetry	24
1.2.2.1.Cyclic voltammetry	25
1.2.2.2. Normal Pulse Voltammetry, NPV	28
1.2.2.3. Differential Pulse Voltammetry	29
1.2.2.4. Square-Wave Voltammetry, SWV	31
1.2.2.5. Preconcentration and Stripping Techniques	32
1.2.3. Electrodes and Electrochemical Cells	32
1.2.4. Ion-selective electrodes	33
1.2.4.1. Classification of ion selective electrodes	34
1.2.4.2. Literature survey on the Polyvinylchloride, PVC membrane electrodes	37
1.2.4.3. Literature survey on the carbon past electrode, CPE	48
1.2.4.4. Literature survey on the glassy carbon electrode, GCE	55
2. Experimental	66
2.1. Instruments	66
2.2. Chemical used	68
2.2.1. Pharmaceutical compounds	68
2.2.2. Reagents	70
2.2.3. Solution preparation	71
2.3. Potentiometric measurements	72

2.3.1. Ion exchangers' preparation	72
2.3.2. Carbon paste electrode sensors, CPE	72
2.3.3. PVC membrane electrode	73
2.3.4. Construction of the calibration curves for the potentiometric measurements	75
2.3.4.1. Characterizations of ion-selective electrode	75
2.4. Voltammetric measurements	77
2.4.1. Briton-Robinson universal buffer	77
2.4.2. Activation of glassy carbon electrode	77
2.4.3. Preparation of carbon-paste disk electrode	78
2.4.4. Recommended measuring procedures	78
2.5. Applications of the new methods for determination of drugs standard in their	
pharmaceutical preparations	80
2.6. New high performance liquid chromatographic methods for determination of	
rosiglitazone, pioglitazone, glimepiride and glyburide	81
2.6.1. Rosiglitazone determination by HPLC	81
2.6.2. pioglitazone, glimepiride and glyburide determination by HPLC	81
2.6.3. Construction of calibration curves	82
3. Result and Discussion	85
3.1. Electrometric determination	85
3.1.1. Potentiometric determination	85
3.1.1.1. Carbon paste electrode response	85
3.1.1.2. Polyvinylchloride, PVC membrane electrodes response	87
3.1.1.3. Principles of the selectivity of drug ion-pairs	88
3.1.1.4. Effect of plasticizers	90
3.1.1.5. pH effect on the electrodes response	92
3.1.1.6. Response time	92
3.1.1.7. Life time	93
3.1.1.8. Selectivity	105
3.1.1.9. Determination of the Pharmaceutical Preparation Samples	105
3.1.2. Voltammetric investigation of the different drugs using CP and GC	
electrodes	110
3.1.2.1. Cyclic voltammetric measurements	110
3.1.2.2. Differential pulse voltammetric investigations	113

3.1.2.3. Comparison between the data obtained by the electrochemical methods and	
the standard HPLC method	114
3.2. Chromatographic measurements	143
3.2.1. Determination of rosiglitazone, by HPLC	143
3.2.2. Determination of pioglitazone glimepiride and glyburide by HPLC	143
3.2.3. System suitability	143
3.2.3.1. Linearity of the calibration curves for the tested drugs standard solutions	144
3.3. Conclusion	149
4. References	150
Arabic Summary	
Arabic Abstract	

List of Figures:

Figure 1: Typical excitation signal for cyclic voltammetry.	25
Figure 2: (a) Schematic diagram of a conventional three electrode cell showing the	
working electrode, reference electrode and auxiliary electrode, (b) Three	
compartment electrochemical cell system (BAS).	26
Figure 3: triangular potential waveform with switching potential at 0 and -1.0 V	
vsAg/AgCl electrode for a reversible redox system.	28
Figure 4: Potential wave form for differential pulse voltammetry.	30
Figure 5: A typical differential pulse voltammogram.	31
Figure 6: Schematic diagram of ion selective electrode.	38
Figure 7: electrode holder for carbon paste or various electrode materials.	66
Figure 8: Selective potentiometric membrane electrodes assembly, for the	
determination of drug on a PVC/drug ion-pair selective membrane.	67
Figure 9: typical ion selective electrode calibration graph.	77
Figure 10: Calibration curves of CPE and PVC membrane electrodes for	0.5
rosiglitazone determination.	95
Figure 11: Calibration curves of CPE and PVC membrane electrode for	06
pioglitazone determination.	96
Figure 12: Calibration curves of CPE for glimepiride and glyburide determination.	97
Figure 13: Effect of pH on the response potential of CPE and PVC membrane	
electrodes for a constant concentration (10 ⁻³ M) of rosiglitazone standard solution.	99
Figure 14: Effect of pH on the response potential of CPE and PVC membrane	
electrodes for a constant concentration (10 ⁻³ M) of pioglitazone standard solution.	100
Figure 15: Effect of pH on the response potential of CPE for a constant	
concentration (10 ⁻³ M) of glimepiride and glyburide standard solutions.	101
Figure 16: Response time for CPE and PVC membrane for rosiglitazone standard	
solution.	102
Figure 17: Response time for CPE and PVC membrane electrode for pioglitazone	
standard solution.	103
Figure 18: Response time for CPE for glimepiride and glyburide standard solution.	104
Figure 19 Cyclic voltammograms of the different drugs recorded on CPE surface at	117
pH 5.0 and scan rate 100 mVs	115
Figure 20: Cyclic voltammograms of the different drugs recorded on GCE surface	

at pH 5.0 and scan rate 100 mVs ⁻¹ .	115
Figure 21: Effect of pH on the peak potential (a) and peak current (b) for 5×10^{-5} M	
rosiglitazone recorded at CPE.	116
Figure 22: Effect of pH on the peak potential (a) and peak current (b) for $5 \times 10^{-5} \text{ M}$	
pioglitazone at recorded CPE.	116
Figure 23: Effect of pH on the peak potential (a) and peak current (b) for $5 \times 10^{-5} \text{ M}$	
glimepiride recorded at CPE.	117
Figure 24: Effect of pH on the peak potential (a) and peak current (b) for $5 \times 10^{-5} \text{ M}$	
glyburide recorded at CPE.	117
Figure 25: Effect of pH on the peak potential (a) and peak current (b) for $5 \times 10^{-5} \text{ M}$	
rosiglitazone recorded at GCE.	118
Figure 26: Effect of pH on the peak potential (a) and peak current (b) for $5 \times 10^{-5} \text{ M}$	
pioglitazone recorded at GCE.	118
Figure 27: Effect of pH on the peak potential (a) and peak current (b) for $5 \times 10^{-5} \text{ M}$	
glimepiride recorded at GCE.	119
Figure 28: Effect of pH on the peak potential (a) and peak current (b) for $5 \times 10^{-5} \text{ M}$	
glyburide recorded at GCE.	119
Figure 29: Effect of the scan rate on the peak potential (a) and peak current (b) for	
5x10 ⁻⁵ M rosiglitazone recorded at CPE.	120
Figure 30: Effect of the scan rate on the peak potential (a) and peak current (b) for	
5x10 ⁻⁵ M pioglitazone recorded at CPE.	120
Figure 31: Effect of the scan rate on the peak potential (a) and peak current (b) for	
5x10 ⁻⁵ M glimepiride recorded at CPE.	121
Figure 32: Effect of the scan rate on the peak potential (a) and peak current (b) for	
5x10 ⁻⁵ M recorded at CPE.	121
Figure 33: Effect of the scan rate on the peak potential (a) and peak current (b) for	
5x10 ⁻⁵ M rosiglitazone recorded at GCE.	122
Figure 34: Effect of the scan rate on the peak potential (a) and peak current (b) for	
5x10 ⁻⁵ M pioglitazone recorded at GCE.	122
Figure 35: Effect of the scan rate on the peak potential (a) and peak current (b) for	
5x10 ⁻⁵ M glimepiride recorded at GCE.	123
Figure 36: Effect of the scan rate on the peak potential (a) and peak current (b) for	
5x10 ⁻⁵ M glyburide recorded at GCE.	123

Figure 3/: Log i_p versus log v for the peak current of rosiglitazone recorded at CPE	
(solid line represents experimental data and dashed line represents the regression).	124
Figure 38: Log i_p versus log v for the peak current of pioglitazone recorded at CPE	
(solid line represents experimental data and dashed line represents the regression).	124
Figure 39: Log i_p versus log v for the peak current of glimepiride recorded at CPE	
(solid line represents experimental data and dashed line represents the regression).	125
Figure 40: Log i_p versus $\log v$ for the peak current of glyburide recorded at CPE	
(solid line represents experimental data and dashed line represents the regression).	125
Figure 41: Log i_p versus log v for the peak current of rosiglitazone recorded at GCE	
(solid line represents experimental data and dashed line represents the regression).	126
Figure 42: Log i_p versus log v for the peak current of pioglitazone recorded at GCE	
(solid line represents experimental data and dashed line represents the regression).	126
Figure 43: Log i_p versus log v for the peak current of glimepiride recorded at GCE	
(solid line represents experimental data and dashed line represents the regression).	127
Figure 44: Log i_p versus log v for the peak current of glyburide recorded at GCE	
(solid line represents experimental data and dashed line represents the regression).	127
Figure 45: Differential pulse voltammograms for the determination of rosiglitazone	
by CPE as a function of concentration of the drug: Pulse amplitude = 50 mV at a	
scan rate of 10 mVs ⁻¹ . The dotted line represents the blank solution.	129
Figure 46: Differential pulse voltammograms for the determination of pioglitazone	
by CPE as a function of concentration of the drug: Pulse amplitude = 50 mV at a	
scan rate of 10 mVs ⁻¹ . The dotted line represents the blank solution.	130
Figure 47: Differential pulse voltammograms for the determination of glimepiride	
by CPE as a function of concentration of the drug: Pulse amplitude = 50 mV at a	
scan rate of 10 mVs ⁻¹ . The dotted line represents the blank solution.	131
Figure 48: Differential pulse voltammograms for the determination of glyburide by	
CPE as a function of concentration of the drug: Pulse amplitude = 50 mV at a scan	
rate of 10 mVs ⁻¹ . The dotted line represents the blank solution	132
Figure 49: Differential pulse voltammograms for the determination of rosiglitazone	
by GCE as a function of concentration of the drug: Pulse amplitude = 50 mV at a	
scan rate of 10 mVs ⁻¹ . The dotted line represents the blank solution.	133
Figure 50: Differential pulse voltammograms for the determination of pioglitazone	
by GCE as a function of concentration of the drug: Pulse amplitude = 50 mV at a	

scan rate of 10 mVs ⁻¹ . The dotted line represents the blank solution.	134
Figure 51: Differential pulse voltammograms for the determination of glimepiride	
by GCE as a function of concentration of the drug: Pulse amplitude = 50 mV at a	
scan rate of 10 mVs ⁻¹ . The dotted line represents the blank solution.	135
Figure 52: Differential pulse voltammograms for the determination of glyburide by	
GCE as a function of concentration of the drug: Pulse amplitude = 50 mV at a scan	
rate of 10 mVs ⁻¹ . The dotted line represents the blank solution.	136
Figure 53: Calibration curve of the variation of the anodic peak current with the	
concentrations of rosiglitazone at CPE surface.	137
Figure 54: Calibration curve of the variation of the anodic peak current with the	
concentrations of pioglitazone at CPE surface.	137
Figure 55: Calibration curve of the variation of the anodic peak current with the	
concentrations of glimepiride at CPE surface.	138
Figure 56: Calibration curve of the variation of the anodic peak current with the	
concentrations of glyburide at CPE surface.	138
Figure 57: Calibration curve of the variation of the anodic peak current with the	
concentrations of rosiglitazone at GCE surface.	139
Figure 58: Calibration curve of the variation of the anodic peak current with the	
concentrations of pioglitazone at GCE surface.	139
Figure 59: Calibration curve of the variation of the anodic peak current with the	
concentrations of glimepiride at GCE surface.	140
Figure 60: Calibration curve of the variation of the anodic peak current with the	
concentrations of glyburide at GCE surface.	140
Figure 61: Typical Chromatogram of 10 ⁻⁴ M of rosiglitazone standard solution.	145
Figure 62: Typical Chromatogram of 10 ⁻⁴ M pioglitazone, glimepiride and	
glyburide standard solutions.	145

List of Tables:

Table 1: composition of carbon paste electrodes (CPEs) and polyvinyl-chloride	
(PVC) membrane electrodes for different percentage of ion-pair and plasticizers.	83
Table 2: Samples and standard solutions preparation for determination of	
rosiglitazone, pioglitazone, glimepiride and glyburide.	84
Table 3: Nernstian slopes, NS, and correlation factor, R, of the calibration curves	
for the potentiometric determination of the different drugs by CPE and PVC	
membrane electrodes using 1% TKB as selectivity promoter in the pH range 3-5.	0.4
The concentration range 10^{-5} - 10^{-3} M.	94
Table 4: The calculated values from regression line equation for the calibration	98
curves of the different electrodes indicated in Table 3.	98
Table 5: Logarithm of selectivity coefficients for different electrodes for	107
rosiglitazone with different interfering ions.	107
Table 6: Logarithm of selectivity coefficients for different electrodes of	
pioglitazone, glimepiride and glyburide with different interfering ions.	108
Table 7: Comparison between the potentiometric and HPLC reference method for	
the drug determination in its pharmaceutical preparations, presented as recovery%	109
± standard error, SE.	109
Table 8: The calculated values from regression line equation for the diffusion	128
current of each drug.	120
Table 9: Regression data of the calibration lines for quantitative determination of	
rosiglitazone, pioglitazone, glimepiride and glyburide at CPE and GCE surface by	
DPV technique.	141
Table 10: Assay for rosiglitazone, pioglitazone, glimepiride and glyburide in	
pharmaceutical preparations by the electrochemical and the standard HPLC	142
techniques.	142
Table 11: Chromatographic data of the different drugs. The data were obtained with	
enhanced integrator.	146
Table 12: The calculated values from regression line equation for the	
HPLC methods calibration curves.	147
Table 13: Assay for rosiglitazone, pioglitazone, glimepiride and glyburide in	
pharmaceutical preparations by the proposed HPLC methods and the reference	1.40
HPLC method.	148