

المنظمة المنظم

(الْمُرْبِينِ الْمُرْبِيلِينِ الْمُرْبِيلِينِ الْمُرْبِيلِ الْمُرْبِيلِ الْمُرْبِيلِ الْمُرْبِيلِ الْمُرْبِيلِ الْمُرْبِيلِ الْمُرْبِيلِ الْمُرْبِيلِ الْمُرْبِيلِ الْمُرْبِيلِينِ الْمُرْبِيلِ الْمُرْرِيلِيلِيلِيلِيلِ الْمُرْبِيلِ الْمُرْبِيلِ الْمُرْبِيلِ الْمُرْم

THE EFFECT OF PREPARATION DESIGNS AND LOADING DIRECTIONS ON FRACTURE RESISTANCE OF LAMINATE VENEERS.

Thesis submitted to The faculty of oral and dental medicine

Cairo University

As a partial fulfillment of the master degree in Fixed Prosthodontics

By
Amal Ali Shafie
B.D.S 2005

Faculty of oral and dental medicine 6th October University

Supervisors

Prof. Dr. Ahmed Hassanein Khalil

Professor of Fixed Prosthodontic

Faculty of Oral & Dental Medicine

Cairo University

Dr. Zeinab Nabil Emam Ali

Lecturer of Fixed Prosthodontic

Faculty of Oral & Dental Medicine

Cairo University

Dr. Ahmed Foad El-Ragy

Lecturer of civil engineering

Faculty of Engineering

Cairo University(Fayoum Branch)

بإشراف

الأستاذ الدكتور. أحمد حسنين خليل

أستاذ الاستعاضات السنية المثبتة كلية طب الفم و الاسنان جامعة القاهرة

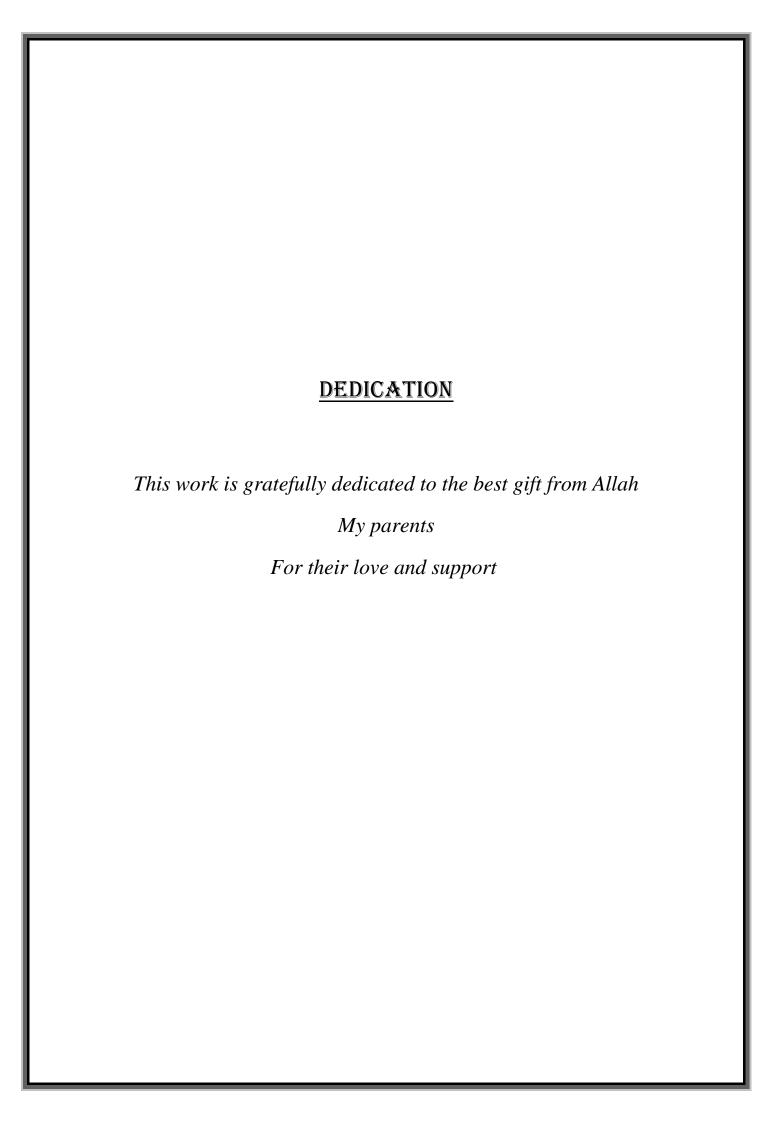
ة . زينب نبيل امام

الدكتور. أحمد فؤاد الراجي

مدرس بقسم الهندسة المدنية

كلية الهندسة

جامعة القاهرة فرع الفيوم


I am most thankful to **Allah** for all his kindness, grace and help to accomplish this work, with my great appreciation and thanks, for achieving all goals in my life.

I would like to express my sincere gratitude and great appreciation to *Dr. Ahmed Hassanien Khalil*, professor of Fixed Prosthodontics, Fixed Prosthodontics Department, Cairo University, for his faithful guidance, kind supervision, continuous encouragement, as well as keen care during the periodical and final revision of this work.

I am greatly indebted to *Dr. Zeinab Nabil Emam Aly*, Lecturer of Fixed Prosthodontics, Fixed Prosthodontics Department, Cairo University, for her valuable advices, continuous support, great help and useful remarks, she willingly gave me during my work.

I am also thankful to *Dr. Ahmed Foad El –Ragy*, Lecturer of civil engineering, Faculty of Engineering, Cairo University (Fayoum Branch), for his guidance and support which were always valuable to me during finite element analysis study.

I am thankful to **all staff members** of Fixed Prosthodontic Department, my professors and my colleagues for their support and cooperation.

LIST OF CONTENTS

	Page
Introduction	1
Review of Literature	3
Aim of Study	36
Materials and Methods	37
Results	80
Discussion	107
Summary	118
Conclusion	120
Recommendations	121
References	122
Arabic Summary	

LIST OF FIGURES

Figure		Page
no.		no.
1	IPS e.max press ceramic ingots.	38
2	Porcelain etching gel.	38
3	Monobond-S (silane coupling agent).	39
4	Acid etching for prepared tooth.	39
5	Bonding agent.	40
6	Resin cement (Variolink II base &catalyst).	40
7(a, b)	Copper mold for root block construction(a) assembled and (b) disassembled.	42
8(a)	Parallelometer device.	42
8(b)	Schematic diagram illustrating the components of parallelometer.	43
9	Window preparation design.	46
10	Palatal overlap preparation design.	46

11	Diamond stones used for laminate preparation	46
12	Wax pattern for prepared tooth.	50
13	Top view of the sprued wax pattern	50
14	Wax pattern sprued and attached to the ring base	51
15	Conventional preheating furnace.	52
16	Investment cylinder.	52
17	EP600 furnace.	53
18	Investment ring placed at the center of EP600 press furnace.	53
19	Ring separation by separating disc.	54
20	Divesting	54
21	Verification of laminate veneer to their corresponding prepared tooth.	55
22	Palatal overlap veneer .	55
23	Window veneer.	55

24	Thickness verification using calliper.	56
25	Three marking points for laminate thickness verification.	56
26	Etching of veneer with hydrofluoric acid.	58
27	Application of silane coupling agent.	58
28	Etching of prepared tooth.	59
29	Application of bonding agent.	59
30(a)	Components of cementation device.	62
30(b)	Schematic diagram illustrating the dimensions and the components of the assembled cementation device used for cementation of window preparation samples	63
30(c)	Schematic diagram illustrating the dimensions and the components of the assembled cementation device used for cementation of palatal overlap preparation samples	64
31	Cementation of window preparation sample.	65
32	Cementation of palatal overlap preparation sample.	65
33	Sample with loading direction 60°	69
34	Sample with loading direction 125°	69
35	Universal mechanical testing machine.	70

36	CT scanning device	75
37	Visualization of the C.T images of the assemblies by MIMICS.	76
38	Thresholdring and color coding of the assembly.	76
39	Remeshing of structures (tooth, enamel, window and palatal overlap design).	77
40	Constructed volume.	78
41	Window and palatal overlap meshed model.	78
42	Mesio-distal section in the window and palatal overlap model.	79
43	Meshed tooth with cement layer.	79
44	Elements and boundary conditions.	80
45	Nodes and boundary conditions.	80
46	A diagram showing the angle degree and stress value on the incisal edge of upper central incisor.	81
47	Cervical fracture of the tooth (Grade I).	83

48	Adhesive failure (Grade III).	84
49	Mixed adhesive and cohesive failure (Grade IV).	84
50	Cohesive failure (Grade II).	85
51	Adhesive failure (Grade III).	86
52	Mixed failure (Grade VI).	86
53	Histogram showing the mean number of cycles for the different group	88
54	Histogram showing the mean fracture resistance for the different design	90
55	Histogram showing the mean fracture resistance for the different loading direction	92
56	Histogram showing the mean fracture resistance for the different tested subgroups.	94
57	Histogram showing the stress distribution in two preparation design and two loading directions on different state	97
58	Histogram showing stress distribution for window design with different loading direction on laminate veneers	98
59	Histogram showing stress distribution for palatal overlap design with different loading direction on laminate veneers	99
60	Histogram showing stress distribution for different preparation design with different loading direction on laminate veneers	100

61	Stress distribution patterns in laminate veneer in window preparation design	103
62	Stress distribution patterns in laminate veneer in palatal overlap preparation design	104
63	Stress distribution pattern in enamel structure in window preparation design	105
64	Stress distribution pattern in enamel structure in palatal overlap preparation design	106
65	Stress distribution pattern in cement layer in window preparation design	107
66	Stress distribution pattern in cement layer in palatal overlap preparation design	108

LIST OF TABLES

Table no.		Page no.
1	Material properties of the materials used in the study	73
2	Grades of failure mode per each design	81
3	Grades of failure mode per each design	83
4	The mean number of cycles the laminate veneers withstood before failure.	85
5	The means, standard deviation (SD) values and results of Student's t-test for comparison between the two designs	87
6	The means, standard deviation (SD) values, results of Student's t tests for comparison between two loading directions	89
7	Mean fracture load values (N) for different groups	91
8	Maximum tensile (S_1) , compressive (S_3) and Von Mesis (S_{equ}) stresses of different preparation design and different loading directions:	94