USE OF AZOLLA AS AN ALTERNATIVE SOURCE OF MINERAL NITROGEN FOR SOME CROPS

Submitted By

Thanaa Elsayed Mohamed Alkhadrawy

B. Sc. Agric. Sc. Microbiology, Ain Shams University 1984

A Thesis Submitted in Partial Fulfillment
Of
The requirement for the Master degree

In Environmental Sciences

Department of Environmental Agriculture Sciences Institute of Environmental Studies and Research Ain Shams University

USE OF AZOLLA AS AN ALTERNATIVE SOUERCE OF MINERAL NITROGEN FOR SOME CROPS

By

Thanaa Elsayed Mohamed Alkhadrawy

B. Sc. Agric. Sc. Microbiology, Ain Shams University 1984

Under supervision of:

Prof. Dr. Wedad El - Tohamy Elsayed Eweda

Prof. of Agric. Microbiology., Fac.of Agric., Ain Shams University.

Prof. Dr. Magdi Ismail Mohamed Mustafa

Prof. of Agric. Microbiology., Fac.of Agric., Ain Shams University.

Prof. Dr. Reda Mohamed El-Shahat

Prof. of Agric. Microbiology., Microbial. Dept., Soils, Water, and Environ. Res. Inst., (SWERI), Agric. Res.Center (ARC).

Prof. Dr. Mohamed fawzi Hamed

Prof. of Agric. Agronomy. Fac. of Agric., Ain Shams University.

Approval Sheet

USE OF AZOLLA AS AN ALTERNATIVE SOUERCE MINERAL NITROGEN FOR SOME CROPS

\mathbf{BY}

THANAA ELSAYEDMOHAMEDELKHADRAWY B. Sc.

Agric. Sc. Microbiology,

Ain Shams University 1984

This thesis for M. Sc. Degree has been approved by:

Prof. Dr. El Shahat Mohamed Ramadan
Prof. of Agric. Microbiology, Fac. of Agric., Ain ShamsUniversity
Prof. Dr. Nemat Abd El-Aziz Noureldin
Prof. of Agric. Agronomy, Fac. of Agric., AinShamsUniversity
Prof. Dr. Wedad El – Tohamy Elsayed Eweda Prof. of Agric. Microbiology, Fac.of Agric., Ain Shams University
Prof. Dr. Mohamed Fawzy Hamed
Prof. of Agric. Agronomy, Fac.of Agric., Ain Sham University

no	TABLE OF CONTENTS	Page
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	4
2.1.	Response of faba bean to inoculation	4
2.2.	Response of soybean to inoculation	5
2.3.	Nitrogen fertilizers	6
2.4.	The fern	7
2.4.1.	Azolla- Anabaena Relationship	8
2.4.2.	Growth rate of Azolla	9
2.4.3.	Reproduction of Azolla	10
2.4.4.	Chemical Composition of Azolla	12
2.4.5.	Environmental factor affecting Azolla growth	13
2.4.5.1.	Water and Humidity	13
2.4.5.2.	Light and photoperiods	14
2.4.5.3.	Temperature	14
2.4.5.4.	Hydrogen Ion Concentration (pH)	15
2.4.5.5.	Mineral Nutrition	16
2.4.5.5.1.	Macronutrient	17
2.4.5.5.1.1.	Nitrogen	17
2.4.5.5.1.2.	Phosphorus	18
2.4.5.5.1.3.	Potassium	19
2.4.5.5.2.	Micronutrient	19
2.4.5.5.2.1.	Iron	19
2.4.5.5.2.2.	Cobalt	20

2.4.5.5.5.3.	Salinity	20
2.4.6.	Azolla Utilization	20
2.4.6.1.	Azolla as Biofertilizer	21
2.4.6.1.1.	Rice production	21
2.4.6.1.2.	Wheat production	22
2.4.6.1.3.	SoilFertility	23
2.4.7.	Other uses	25
2.4.7.1.	Control of Weeds	25
2.4.7.2.	Control of Mosquitoes	25
2.4.7.3.	The Water Purification	25
3.	MATERIALS ANDMETHODS	26
3.1.	Materials	26
3.1.1.	Soil used	26
3.1.2.	Azolla used	26
3.1.3.	Seeds used	29
3.1.4.	Inoculums used	29
3.1.5	Media used	29
3.1.5.1.	Yoshida medium	29
3.1.5.2.	Modified Ashby's medium	30
3.1.5.3.	Marten's medium rose–Bengal	30
3.1.5.4.	Nutrient agar media	30
3.1.5.5.	Jensen medium	31
3.1.5.6.	BG11 medium	31
3.2.	Methods	32
3.2.1.	Experimental Design (the treatments)	33
3.3.	Azolla determinations	33

3.3.1.	Fresh and dry weight	33
3.3.2.	Azolla Doubling time	33
3.3.3.	Nitrogenase activity	34
3.4.	Parameters of faba bean and soybean experiments	35
3.5.	N P K determination	35
3.5.1.	Nitrogen content	35
3.5. 2.	Phosphorus content	36
3.5.3.	Potassium content	36
3.6.	Soil biological analysis	36
3.6.1.	Bacterial count	36
3.6.2.	Fungal count	36
3.6.3.	Actinomycetes count	39
3.6.4.	Azotobacter count	36
3.6.5.	Cyanobacteria count	37
3.6.6.	CO ₂ evolution	37
3.7.	Statistical analysis	37
4.	RESULTS AND DISCUSSION	38
4.1.	Azolla pinnata growing on yoshida and soil media	38
4.1.1.	Azolla fresh and dry weight and doubling time	38
4.1.2.	Nitrogenase activity	41
4.1.3.	Nitrogen Percentage and Content	41
4.1.4.	Phosphorus and Potassium contents	44
4.2.	Response of faba bean to <i>Azolla Rhizobia</i> inoculation and different Nitrogen (urea) levels application	47
4.2.1.	Root dry weight	47
4.2.1.	Root dry weight	50
4.2.2.	Number and dry weight of root nodules	47

4.2.3.	Nitrogenase activity	52
4.2.4.	Plant height	52
4.2.5.	Plant dry weight	55
4.2.6.	Yield component (straw and seeds) and 100 seeds wt.	57
4.2.7.	Nitrogen content in seeds and straw of faba bean	59
4.2.8.	Phosphorus and potassium uptake in seeds and straw of faba bean	62
4.2.9.	Soil biological activity	63
4.2.10.	Effect of different rates of <i>Azolla</i> and <i>Rhizobium</i> and / or urea on some Physical properties of soil after harvested faba bean	67
4.2.10.1.	Organic matter	67
4.2.10.2.	Electrical conductivity (EC)	69
4.2.10.3.	Soil reaction (pH)	70
4.2.10. 4.	Total nitrogen content	70
4.2.10.5.	Water Holding Capacity	71
4.3.	Application of Azolla dry or fresh inoculation	72
4.3.1.	Root dry weight	72
4.3.2.	Numbers and dry weight of root nodules	73
4.3.3.	Nitrogenase activity	77
4.3.4.	The effect of Application of <i>Azolla</i> dry or fresh on soybean yield and it's components	79
4.3.4.1.	Plant height	79
4.3.4.2.	Plant dry weight	79
4.3.4.3.	Number of seeds pod ⁻¹ and plant ⁻¹	82
4.3.4.4.	Seeds weight pod ⁻¹	82
4.3.4.5.	Yield component (straw and seeds)	84
4.3.4.6.	100 seeds yield	86

4.3.4.7.	Nitrogen, phosphorus and potassium content	87
4.3.4.8.	Soil biological activity	90
4.4.	Effect of <i>Azolla</i> , <i>Bradyrhizobia</i> and /or urea on some physiochemical properties of soil after soybean harvesting	94
4.4.1.	Organic Matter	95
4.4.2.	Electrical conductivity (EC)	95
4.4.3.	Soil reaction (pH)	95
4.4.4.	Total nitrogen	97
4.4.5.	Water holding capacity	98
5.	SUMMARY	99
6.	CONCLUSION	
7.	REFERENCES	105
	ARABIC SUMMARY	

No	LIST OF TABLE	Page
1	Chemical and physical analysis of the experimental soil.	28
2	Effect of two growth media on fresh and dry weight (g m ⁻²) and doubling time (days) of <i>Azolla pinnata</i> .	39
3	Effect of two growth media on N_2 -ase activity and nitrogen content(g m ⁻²) and percentag of Azolla pinnata	42
4	Effect of two media on phosphorus and potassium contens (mg g ⁻¹ dry wt.) of <i>Azolla pinnata</i> .	45
5	Root dry wt., Nodules No. and dry wt. and N_2 - fixation of faba bean plant as affected by <i>Azolla</i> , <i>R.leguminosarum</i> and /or urea.	48
6	Growth yield component of faba bean as affected by application of <i>Azolla</i> , <i>R. Leguminosarum</i> and /or combined with different rates of urea	54
7	NPK (ppm) content in seed and straw yield of faba bean harvesting as affected by application o <i>Azolla</i> , <i>R. leguminosarum</i> and /or urea.	60
8	Effect of Azolla, R. leguminosarum and / or urea on densities of total bacteria, Fungi, Actinomycetes , Azotobacter, Algae and $C_{\rm O2}$ evaluated from the rhizosphere soil of faba bean grown in sandy soil after 45, 75, 120 days of cultivation.	64
9	Effect of <i>Azolla, R. leguminosarum</i> and / or urea onsome physiochemical of soil properties after faba bean harvesting	68
10	Root dry wt., no. and dry wt. of Nodules and N_2 -fixation of soybean plant as affected by $Azolla,B.jabonicum$ and / or urea.	74
11	Effect of <i>Azolla</i> , <i>B. japonicum</i> and urea fertilizer treatments on soybean yield and its component	80
12	NPK (ppm) content in seed and straw yield of soybean harvesting as affected by application of <i>Azolla</i> , <i>B. jabonicum</i> inoculation and urea.	88
13	Effect of <i>Azolla</i> , <i>B. jabonicum</i> and / or urea on densities of total Bacterial Actinomycetes, Fungi, Azotobacter, Algae and	91

rates of CO_2 evolutes from the rhizosphere soil of soybean grown after 45, 75, 120 days

14 Effect of *Azolla*, *B. japonicum* inoculation and of urea on 96 some physiochemical of soil properties after soybean harvesting.

No	LIST OF PHOTO AND FIGUER	Page
PHT.(1)	AZOLLAPINNATA	27
Fig.(1)	Effect of two growth media on fresh, dry weight (g ⁻¹ m ²) and doubling time (days) of <i>Azolla pinnata</i> .	40
Fig. (2)	Effect of two growth media on nitrogenaese activity (μ mole C_2H_4 g $^{-1}$ dry wt. hr^{-1}) and nitrogen content ($g^{-1}m^2$) of <i>Azolla pinnata</i> .	43
Fig. (3)	Effect of the two media on phosphorus and potassium content (mg / g dry wt1) of <i>Azolla pinnata</i> .	46
Fig. (4)	Root dry weight of faba bean in sandy soil as affected by <i>Azolla</i> , <i>R. leguminosarum</i> and/or urea.	49
Fig.(5)	Nodulation battern formed on faba bean in sandy soil as affected by <i>Azolla</i> , <i>R. leguminosarum</i> and / or urea.	50
Fig.(6)	N_2 -ase activity on root nodules of faba bean in sandy soil as affected by \emph{Azolla} , $\emph{R. leguminosarum}$ and / or urea.	53
Fig.(7)	Plant height (cm), Plant dry wt. (g / plant) of faba bean as affected by application of <i>Azolla</i> , R. <i>leguminosarum</i> and /or urea.	56
Fig.(8)	Straw yield, Seeds yield and 100 seeds weight (g) of faba bean as affected by application of <i>Azolla</i> , <i>R. leguminosarum</i> and / or urea	58
Fig. (9)	NPK (ppm) content in seed and straw yield of faba bean as affected by application of <i>Azolla</i> , <i>R.leguminosarum</i> and / or urea., and / or urea.	61
Fig. (10)	Root dry weight of soybean in sandy soil as affected by <i>Azolla</i> , <i>B. japonicum</i> and / or urea.	
Fig.(11)	Nodulation battern formed on soybean in sandy soil as affected by <i>Azolla</i> , <i>B. japonicum</i> and / or urea	76
Fig.(12)	N ₂ -ase activity on root nodules of soybean in sandy soil as affected by <i>Azolla</i> , <i>B. japonicum</i> and/or urea	78
Fig.(13)	Plant height, Plant dry wt. and No. of pods / plant of soybean as affected by application of <i>Azolla</i> , <i>B. japonicum</i> and/or urea	81

- Fig. (14) No. of seeds pod⁻¹, No. of seeds plant⁻¹ and dry wt.of 83 seeds pod⁻¹ of soybean as affected by *Azolla*, *B. japonicum* and/or urea
- Fig.(15) Straw yield, Seeds yield and 100 seeds weight (g) of 85 soybean as affected by *Azolla*, *B. japonicum* and / or urea.
- Fig.(16) NPK (ppm) content in seed and straw yield of 89 soybean as affected by *Azolla*, *B. japonicum* and / or urea.

Dedication

I dedicate this work to:

soul of

Prof. Dr. Magdi Ismail Mohamed Mustafa

Prof.of

Agric. Microbiology., Dep.ofAgric.

Microbiol., Fac. of Agric., Ain Shams

University For last help during this work.

ACKNOWLEDGMENT

Praise and thanks be to *ALLAH*, the most merciful for assisting and directing me to the right way.

This work has been carried out under the supervision and direction of prof. Dr. Wedad EL- Tohamy Elsayed Eweda, prof. of Agric. Microbiol., Fac. Agric., Ain-Shams Univ., Prof Dr. Reda Mohamed EL-Shahat, Head Researcher, Soils, Water, and Environ. Res. Inst., (SWERI) Agric. Res. Centre, ARC. And prof., Mohamed Fawzy Hamed, prof. of Agronomy., Fac. of Agric., Ain shams univ.

I wish to express my deepest gratitude to them for suggesting the problem, valuable advice, guidance and constructive criticism. Thanks are also extended to all colleagues in Fac. Agric. Ain-shams Univ.

Special thanks are also extended to all staff member of Agric. Microbial. Dept. Soils, Water, and Environ. Research Institute, ARC, Giza, for their sincere help and providing all needed facilities necessary for carrying out this work.

1- INTRODUCTION

Increasing population in Egypt led to a remarkable shortage in human food supply. Therefore, it was necessary to find a practical and guaranteed approach to provide enough food for facing the population increase. In this respect, more than one million feddans of desert area around the country are being cultivated with different crops including faba bean and soybean as one of the most important legumes that provide a considerable part of human protein requirements. Special attention paid for soybean as one of the most promising legumes enough to supply a considerable size of human protein requirements withreasonable costs (Shehata, 2004).

So, an attention directed towards the desert soils, characterized by sandy or calcareous nature. The fertility status of this soil is poor, in turn application of bio or organic-fertilization by using microorganisms or organic supplements to improve it through their activities and providing most of the essential nutrients required to plant growth and crop productivity (Radwan, et al. 1993). The organic matter content of Egyptian soils does not exceed 2% due to high temperature and dry climate in addition to the shortage of the organics manure (Riad, 1982). Therefore, it is necessary to add the organic fertilizers to improve the biological properties of the newly reclaimed sandy soils Bohn et al., (1985). Azolla pinnata can double its biomass in 3-5 days under optimum laboratory conditions while the doubling time taken in the field is generally more (Watanabe et al., 1977). Azolla contains 3-6 % N, 0.5-0.9 % P, 2-4.5 % K on dry weight basis besides other major and minor nutrients. Abo Taleb et al. (2002) indicated that different ratios of farm yard manure (FYM) and poultry manure combined with bacterial