Properties of the Superdeformed Bands in The mass region A≈130

Thesis submitted in partial fulfillment of the requirements for the Degree of Master of Science

in the

Physics Department, Faculty of Science, Ain Shams University

By

Sara Ahmed Fawzy Mohamed El-Khateeb

B.Sc. 2007

Supervisors

Prof. Dr. Samir Youshaa El-Khamisy

Prof. of Nuclear Physics, Physics Department, Faculty of Science, Ain Shams University.

Dr. Atef Abd El-Moniem Khazbak

Physics Department, Faculty of Science, Ain Shams University.

Dr. Sahar Abd El-Ghany Ibrahim

Physics Department, Faculty of Science, El-Azhar University.

Properties of the Superdeformed Bands in The mass region A≈130

Thesis submitted in partial fulfillment of the requirements for the Degree of Master of Science in the

Physics Department, Faculty of Science, Ain Shams
University

By

Sara Ahmed Fawzy Mohamed El-Khateeb

B.Sc. 2007

Properties of the Superdeformed Bands in The mass region A≈130

Student Name: Sara Ahmed Fawzy mohamed El-Khateeb

Degree: Master of Science

Department: Physics

Faculty: Science

University: Ain Shams

Graduation Date: 2007

Registration Date: 2009

Master of Science Thesis

Student Name: Sara Ahmed Fawzy mohamed El-Khateeb

Thesis Title: Properties of the Superdeformed Bands in The mass region $A \approx 130$

Degree: Master of Science

Supervising Committee

Prof. Dr. / Samir Youshaa El-Khamisy Dr. / Atef Abd El-Moniem Khazbak Dr. / Sahar Abd El-Ghany Ibrahim

Examining Committee

/ /2011

Prof. Dr. /	
Prof. Dr. /	
Prof. Dr. /	
Graduate Studies:	
Date of Research: / / 2011	
Seal of Approval:	
Thesis has been approved on:	/ /2011
Faculty Council Approval U	Jniversity Council Approval

/ /2011

Contents

Ackn	owledgment	i
List o	of figures	ii
List o	of tables	vi
Abstı		1
		2
Sumi Intro	duction	3
	oter 1. Theoretical aspects of nuclear stru	
	-	
1.1		
1.1.1	1 0 1	
1 1 2	model	
1.1.3 1.1.4	±	
1.1.4		
-		
	The collective vibration	
	Nuclear electric quadrupole moments	
	2 Static and transition moments	
1.2.2.2	The Collective rotation	
1.3	The variable moment of inertia (VMI) model	
1.4	The nuclear softness (NS) model.	
1.5	The dynamic version of the unified collective model	
1.6	The interacting Boson model (IBM)	
Chap	oter 2. Backbending phenomena in atomic i	nuclei
2.1	High – spin nuclear structure	35
	Rotational bands and angular momentum alignment	
	deformed nuclei	
2.1.2	Crossing rotational bands	
2.1.3	The coriolis antipairing effect (CAP) in even-even	
	nuclei	
2.2	Simple model for backbending	44

Chap	ter 3. Superdeformation
3.1 3.2 3.3	Surface energy of the deformed nucleus
Chap	ter 4. Results and discussion
4.1 4.2 4.3	Analysis of ground state bands of Nd and Ce isotopes59 Backbending phenomena in some even-even Nd and Ce isotopes
4.4 4.5	Transition probabilities of ground state bands96 The effective charges around the mass region of some lanthanides isotopes99
Conc	lusion 101
	rences
Alab	ic suiiiliai y

Acknowledgment

First of all, I should articulate my extremely grand indebtedness to **Allah** whom prosperity and succor accompanied me this work.

I would like to record my gratitude to **Prof. Dr. Samir Youshaa El-khamisy,** the head of Physics Department, Faculty of Science, Ain Shams University for suggesting the point of research, supervision, useful discussion, great efforts and guidance. Furthermore using his precious times to read this thesis and gave me critical comments about it. Above all and the most needed, he provided me unflinching encouragement and support in various ways.

My very special thanks goes out to **Dr. Sahar Abd El-Ghany Ibrahim**, Physics Department, faculty of Science, El-Azhar University for her supervision, advice, and guidance from the very early stage of this research and her sincere help during the work and the preparation of this thesis.

Many thanks go to **Dr. Atef Abd El-Moniem Khazbak**, Physics Department, Faculty of science, Ain Shams University for science discussion and the pleasure working together.

Finally, I would like to thank my family for the support they provided me through my entire life without their love, encouragement and editing assistance, I would not have finished this thesis.

List of figures

Fig.(1.1): Shell structure obtained with infinite well, harmonic oscillator, intermediate form and spin-orbit potentials
Fig.(1.2): The vibrational modes of a spherical system 17
Fig.(1.3): Sphere, prolate, and oblate shapes of nuclei21
Fig.(1.4): A plot of measured values shows that magic number of neutrons and protons correlate with near zero quadrupole moments. In between the closed shell the nucleus has non zero quadrupole moments.
Fig.(1.5): Deformed nuclei in the N - Z plane
Fig.(1.6): Schematic of the coupling of the collective angular momentum, R and the intrinsic angular momentum of the valence nucleons, J
Fig.(2.1): Schematic illustration of the band interaction, leading to two different curvature of the yrast lines and consequently to two different shapes of moment of inertia curves
Fig.(2.2): Schematic figure of the superconductive band and the rigid band
Fig.(3.1): The schematic representation of the double-humped barrier of a nucleus which is deformed in its ground state49
Fig.(4.21a): The moment of inertia $2\varphi/\hbar^2$ versus the square of the rotational frequency $(\hbar\omega)^2$ for 126 Ce
Fig.(4.21b): The moment of inertia $2\varphi/\hbar^2$ versus the square of the rotational frequency $(\hbar\omega)^2$ for ¹²⁸ Ce
Fig.(4.21c): The moment of inertia $2\varphi/\hbar^2$ versus the square of the rotational frequency $(\hbar\omega)^2$ for ¹³⁰ Ce
Fig.(4.21d): The moment of inertia $2\varphi/\hbar^2$ versus the square of the rotational frequency $(\hbar\omega)^2$ for ¹³² Ce

Fig.(4.21e): The moment of inertia $2\varphi/\hbar^2$ versus the square of the rotational frequency $(\hbar\omega)^2$ for ¹³⁴ Ce
Fig.(4.21f): The moment of inertia $2\varphi/\hbar^2$ versus the square of the rotational frequency $(\hbar\omega)^2$ for ¹³⁴ Nd69
Fig.(4.21g): The moment of inertia $2\varphi/\hbar^2$ versus the square of the rotational frequency $(\hbar\omega)^2$ for 130 Nd70
Fig.(4.21h): The moment of inertia $2\varphi/\hbar^2$ versus the square of the rotational frequency $(\hbar\omega)^2$ for ¹³² Nd70
Fig.(4.22a): The relation between the number of neutron N and the energy ratios R_l for Ce isotopes
Fig.(4.22b): The relation between the number of neutron N and the energy ratios R_1 for Nd isotopes
Fig.(4.31a): The relation between (φ^1, φ^2) and $(\hbar\omega)$ for different I_0 in 132 Nd(3)80
I_0 in ¹³² Nd(3)
Fig.(4.31c): The relation between (φ^1, φ^2) and $(\hbar\omega)$ for different I_0 in ¹³⁶ Nd(1)81
Fig.(4.31d): The relation between (φ^1, φ^2) and $(\hbar\omega)$ for different I_0 in $^{132}\text{Ce}(1)$
Fig.(4.31e): The relation between (φ^1, φ^2) and $(\hbar\omega)$ for different I_0 in $^{132}\text{Ce}(2)$ 82
Fig.(4.31f): The relation between (φ^1, φ^2) and $(\hbar\omega)$ for different I_0 in $^{130}\mathrm{Ce}(2)$ 82
Fig.(4.31g): The relation between (φ^1, φ^2) and $(\hbar\omega)$ for different I_0 in $^{130}\text{Ce}(3)$
Fig.(4.31h): The relation between (φ^1, φ^2) and $(\hbar\omega)$ for different I_0 in $^{130}\text{Ce}(4)$ 83
Fig.(4.31i): The relation between (φ^1, φ^2) and $(\hbar\omega)$ for different I_0 in ¹³⁴ Ce84

List of figures

Fig.(4.32a): Comparison between φ^2_{exp} and φ^2_{cal} for different I_0 in $^{132}\text{Nd}(3)$
Fig.(4.32b): Comparison between φ_{exp}^2 and φ_{cal}^2 for different I_0 in ¹³⁴ Nd(1)92
Fig.(4.32c): Comparison between φ_{exp}^2 and φ_{cal}^2 for different I_0 in 136 Nd(1)93
Fig.(4.32d): Comparison between φ^2_{exp} and φ^2_{cal} for different I_0 in $^{132}\text{Ce}(1)$
Fig.(4.32e): Comparison between φ_{exp}^2 and φ_{cal}^2 for different I_0 in $^{132}\text{Ce}(2)$ 94
Fig.(4.32f): Comparison between φ^2_{exp} , φ^2_{cal} for $^{130}\text{Ce}(2)$ 94
Fig.(4.32g): Comparison between φ^2_{exp} , φ^2_{cal} for $^{130}\text{Ce}(3)$ 95
Fig.(4.32h): Comparison between φ^2_{exp} , φ^2_{cal} for $^{130}\text{Ce}(4)$ 95
Fig.(4.32i): Comparison between φ^2_{exp} , φ^2_{cal} for ¹³⁴ Ce96
Fig.(4.51): The relation between N_{γ}/N_{π} and $[NB(E2)/N_{\pi}^{2}]^{0.5}$ for some Ce and Nd isotopes

List of tables

Table (4.11a): Experimental and calculated energies in (MeV) of levels for ground state bands in even-even Ce isotopes using different nuclear models
Table (4.11b): Experimental and calculated energies in (MeV) of levels for ground state bands in even-even Nd isotopes using different nuclear models
Table (4.12): The calculated parameters of the variable moment of inertia (VMI) model, nuclear softness (NS3) model, improved dynamic version model (IDVM) and simple model (SM) of backbending for Ce and Nd isotopes
Table (4.21): The energy ratios (E_l/E_2) for ¹²⁶⁻¹³⁴ Ce and ¹²⁸⁻¹³⁸ Nd isotopes. The energies are given in keV
Table (4.22): The calculated values of Δ_n , Δ_p , $\Delta = (\Delta_n + \Delta_p)/2$, $N_p N_n/\Delta$ and P factor
Table (4.31a): Comparison between $E_{\gamma(exp)}$, φ^2_{exp} and $E_{\gamma(cal)}$, φ^2_{cal} for different I_0 in 132 Nd(3)85
Table (4.31b): Comparison between $E_{\gamma(exp)}$, φ^2_{exp} and $E_{\gamma(cal)}$, φ^2_{cal} for different I_0 in 134 Nd(1)
Table (4.31c): Comparison between $E_{\gamma(exp)}$, φ^2_{exp} and $E_{\gamma(cal)}$, φ^2_{cal} for different I_0 in 136 Nd(1)
Table (4.31d): Comparison between $E_{\gamma(exp)}$, φ^2_{exp} and $E_{\gamma(cal)}$, φ^2_{cal} for different I_0 in $^{132}\text{Ce}(1)$
Table (4.31e): Comparison between $E_{\gamma(exp)}$, φ^2_{exp} and $E_{\gamma(cal)}$, φ^2_{cal} for different I_0 in $^{132}\text{Ce}(2)$
Table (4.31f): Comparison between $E_{\gamma(exp)}$, φ^2_{exp} and $E_{\gamma(cal)}$, φ^2_{cal} for different I_0 in $^{130}\text{Ce}(2)$ and $^{130}\text{Ce}(3)$ 90

List of tables

Table (4.31g): Comparison between $E_{\gamma(exp)}$, φ^2_{exp} and $E_{\gamma(cal)}$, φ^2_{cal} for different I_0 in ¹³⁰ Ce(4) and ¹³⁴ Ce91
Table(4.41): The calculated values of transition probabilities $B(E2)$, quadrupole moment Q_0 and the deformation parameter β
Table (4.51): The calculated values of $[NB(E2)/N_{\pi}^{2}]^{0.5}$ and N_{γ}/N_{π} for some even Ce and Nd isotopes

Abstract

Abstract

In the present work, the nuclear structure study of some even-even isotopes in the mass region $A \approx 130$ has been performed. According to this work, the ground state bands in some even-mass Ce and Nd isotopes were systematically analysed by using a simple modified version of previously proposed approach based on the collective model predictions. The model successfully describes the backbending phenomena in even- mass Ce and Nd isotopes and fits remarkably well to the experimental observations with a few parameters.

The base line spins I_0 of superdeformed (SD) bands in some even-even Ce and Nd isotopes have been determined by a very accurate method. Also, the transition energies E_{γ} of the SD band in even-mass Ce and Nd isotopes have been calculated and compared with the corresponding experimental values.

Sisummary