Echocardiographic Changes in Obese Children and Adolescents

Thesis

Submitted for partial Fulfillment of MD Degree in Pediatrics

Presented by Mohamed Mostafa Ahmed

Msc of Pediatrics
Faculty of Medicine - Cairo University

Under supervision of

Prof. Shereen Abdelghaffar Taha

Professor of Pediatrics
Faculty of Medicine - Cairo University

Prof. Ranya Aly Hegazy

Assistant Professor of Pediatrics Faculty of Medicine - Cairo University

Dr. Hanan Zekri Khaled

Lecturer of Pediatrics Faculty of Medicine - Cairo University

Prof. Fatma Ahmed El Mougy

Professor of Clinical & Chemical Pathology Faculty of Medicine - Cairo University

> Faculty of Medicine Cairo University 2014

Acknowledgment

First of all many thanks to **Great Allah** who helped me to bring this work to light.

I would like to express my supreme gratitude to **Dr. Shereen Abdelghaffar**, Professor of Pediatrics,
Faculty of Medicine, Cairo University, for her continuous guidance, her close supervision, criticism and valuable instructions throughout this study.

It is a pleasure to express my gratitude and great appreciations to **Dr. Ranya Aly Hegazy**, Assistant Professor of Pediatrics, Faculty of Medicine, Cairo University, for the time and efforts she devoted to the supervision of the present work and for valuable instructions throughout this study.

I would like to express my deepest thanks and supreme gratitude to **Dr. Hanan Zekri**, Lecturer of Pediatrics, Faculty of Medicine, Cairo University, for her hard and time consuming echocardiography work with the precise results aimed at achieving better scientific levels in the world of Science.

I'm very grateful to Dr. **Fatma El Mougy**, Professor of Chemical Pathology, Faculty of Medicine, Cairo University, for her kind cooperation in the laboratory part of this thesis, for her guidance, support and patience.

I'm also deeply thankful to all the members of my family for their cooperation and encouragement.

ABSTRACT

Obesity has become a major health problem worldwide. Cardiovascular abnormalities have been described not only in obese adults but also in obese children and adolescents. The aim of the present study was to detect early left ventricular structural and functional changes in obese Egyptian children and adolescents without comorbidities. Anthropometric, laboratory and echocardiographic parameters were obtained from 50 obese children and adolescents with an average body mass index (BMI) of 32.7 ± 5.2 and compared to 25 non-obese sex- and age-matched controls, with a BMI of 17.4 ± 3.2 . Cardiac dimensions, left ventricular systolic and diastolic functions were evaluated. The obese group had a significantly higher enddiastolic septal ($(0.90 \pm 0.17 \text{ vs } 0.62 \pm 0.06, \text{ p} < 0.01)$ and posterior wall thickness $(0.72 \pm 0.14 \text{ vs } 0.57 \pm 0.06, p < 0.01)$ and left ventricular mass index $(47.40 \pm 25.62 \text{ vs } 28.16 \pm 3.12, p < 0.01)$ than the non-obese group. BMI and waist circumference values showed significant correlations with these echocardiographic variables. Obese children showed abnormal diastolic parameters whereas systolic function remained normal. Multiple regression analysis showed that the body mass index is a significant predictor of left ventricular mass index. Obese children and adolescents have significant left ventricular hypertrophy and changes in early diastolic filling, even in the absence of other comorbidities, early in the course of the disease.

KEY WORDS

Obesity, Body mass index, waist circumference, Left ventricular mass index, Echocardiography, diastolic dysfunction, Systolic dysfunction and Obesity cardiomyopathy.

List of Tables

	Title	page			
Review of literature:					
Table 1	Specific syndromes linked to childhood obesity	17			
Table 2	Genetic syndromes associated with obesity	19			
Table 3	Single gene defects associated with obesity	20			
Table 4	Adverse outcomes in childhood obesity	37			
	Diagnostic Criteria for Metabolic Syndrome				
Table 5	adapted for children and adolescents proposed by	40			
	IDF, WHO, NCEP and I DPAID.				
Table 6	Definitions for metabolic syndrome for children and	41			
	adolescents adapted by various authors.	41			
Table 7	Potential targets for new obesity treatments	54			
Subjects a	Subjects and Methods:				
Т-1-1- 1	Cuttoff points for 99th percentile BMI according to	100			
Table 1	age and gender	109			
Table 2	Acceptable, Borderline-High, and High Plasma	111			
Table 2	Lipid Concentrations for Children and Adolescents	111			
Table 3	The 95th percentile for TG and 5th percentile of HDL	116			
Results:					
	Descriptive statistics of demographic and				
Table 1	anthropometric data of 50 obese children and 25	118			
	controls				
Table 2	Descriptive statistics of clinical and laboratory data of 50 obese children and 25 controls	119			
Table 3	Descriptive statistics of Echocardiographic data of	4.4.0			
	50 obese children and 25 controls	119			
	Frequency of different criteria of MetS in 18 obese	100			
Table 4	patients with MetS	122			
T-1-1- 5	Variables showing significant difference between	102			
Table 5	hypertensive and normotensive obese children	123			
Table 6	Variables showing significant difference between				
	obese children with and without Metabolic	124			
	syndrome				
Table 7	Variables showing significant difference between	125			
	males and females	125			

Table 8	Variables showing significant difference between symptomatic and non symptomatic obese children	126
Table 9	Variables showing significant difference between obese and severely obese children	127
Table 10	Variables showing significant difference between obese children with normal and increased HOMA	128
Table 11	Variables showing significant difference between obese children with normal and increased IVSd	129
Table 12	Variables showing significant difference between obese children with normal and abnormal E/A ratio	129
Table 13	Variables showing significant difference between obese children with no LVH, LVH and severe LVH	130
Table 14	Variables showing significant difference between obese children with acceptable, borderline and high cholesterol	130
Table 15	Variables showing significant difference between obese children with acceptable, borderline and high triglycerides	131
Table 16	Variables showing significant difference between obese children with acceptable, borderline and high LDL	132
Table 17	Variables showing significant difference between obese children with acceptable, borderline and high HDL	132
Table 18	Variables showing significant difference between obese children with normal geometry, concentric remodelling, eccentric hypertrophy and concentric hypertrophy	133
Table 19	Correlation of structural echo parameters with anthropometric and clinical data in obese children	134
Table 20	Correlation of functional echo parameters with anthropometric and clinical data in obese children	135
Table 21	Correlation of structural echo parameters with laboratory data in obese children	136
Table 22	Correlation of functional echo parameters with laboratory data in obese children	137
Table 23	Significant predictors of each echo parameter	141

List of Figures

	Legend	page		
Review of literature:				
Figure 1	BMI Growth Charts for girls	25		
Figure 2	BMI Growth Charts for boys	26		
Figure 3	Recommendations for Weight Goals	43		
Figure 4	Operations performed for weight loss	57		
Results:				
Figure 1	Distribution of obese children according to the	120		
	presence or absence of metabolic syndrome			
Figure 2	Distribution of obese children according to the	120		
	presence or absence of hypertension			
Figure 3	Distribution of obese children according to the	120		
Inguic 3	level of fasting glucose			
Figure 4	Distribution of obese children according to the	120		
	level of fasting insulin			
Figure 5	Distribution of obese children according to the	120		
	level of HOMA			
Figure 6	Distribution of obese children according to the	121		
	level of serum Cholesterol	121		
Figure 7	Distribution of obese children according to the	121		
I iguic /	level of serum Triglycerides	121		
Figure 8	Distribution of obese children according to the	121		
	level of HDL	121		
Figure 9	Distribution of obese children according to the	121		
	level of LDL			
Figure 10	Mean LVMI (g m-2.7) of both hypertensive and	122		
	normotensive obese children	122		
Figure 11	Mean LVMI (g m-2.7) of obese children with and	125		
	without metabolic syndrome	123		
Figure 12	Mean LVMI (g m-2.7) of both obese children and	127		
	severely obese children			
Figure 13	Correlation between LVMI (g m-2.7) and BMI	137		
Figure 14	Correlation between LVMI (g m-2.7) and Waist	138		
	Circumference (WC)			
Figure 15	Correlation between LVMI (g m-2.7) and systolic	138		
Figure 15	blood pressure (SBP)	130		
Figure 16	Correlation between LVMI (g m-2.7) and diastolic	139		
	blood pressure (DBP)	137		
Figure 17	Correlation between LVMI (g m-2.7) and	139		
	triglycerides (TG)	137		
Figure 18	Correlation between LVMI (g m-2.7) and HDL	140		

LIST OF ABBREVIATIONS

A- Wave flow velocity during atrial contraction

AAP American Academy of Pediatrics

ADA American Diabetes Association

AGB Adjustable gastric banding

ANP Atrial natriuretic peptide

AO Aorta

BIA Bioelectrical Impedance Analysis

BMI Body mass index

BSA Body surface area

CDC Centers for Disease Control and Prevention

CHD Coronary heart disease

CNTF Ciliary Neurotropic Factor

CV Cardiovascular

DBP Diastolic blood pressure

DEMPU Diabetes, Endocrine and Metabolism Pediatric Unit

DT E- wave deceleration time

DXA Dual energy x-ray absorptiometry

E- wave flow velocity during early filling

E/A E/A ratio

FDA US Food and Drug Administration

FG Fasting glucose

FI Fasting insulin

FS fractional shortening

HDL High density lipoprotein

HF Heart failure

HOMA Homeostatic model assessment of insulin resistance

HR Heart rate

IDF International Diabetes Federation

IGF-1 Insulin like growth factor-1

IOTF International Obesity Task Force

IR Insulin resistance

IRS Insulin resistance syndrome

IVSd Interventricular septum diameter

LA Left atrium

LDL Low density lipoprotein

LV Left ventricle

LVEDD Left ventricular end-diastolic dimension

LVESD left ventricular end-systolic dimension

LVH Left ventricular hypertrophy

LVM Left ventricle mass

LVMI Left ventricle mass index

MetS Metabolic syndrome

NCEP National Cholesterol Education Program

NCEP-ATP III National Cholesterol Education Program – Adult

Treatment Panel III

NCHS National Center for Health Statistics

NHANES National Health and Nutrition Examination Survey

NHBPEP National High Blood Pressure Education Program

POMC Propiomelanocortin

PW left ventricle posterior wall

RV Right ventricle

RWT Relative Wall Thickness

RYGB Roux-en-Y gastric bypass

SBP Systolic blood pressure

TC Total cholesterol

TDI Tissue Doppler Imaging

TG Triglycerides

TNF Tumor necrosis factor

TNF- α Tumor necrosis factor- α

TV Television

VLDL Very low density lipoprotein

WC Waist circumference

WHO World Health Organization

WHR Waist-hip ratio

WhtR Waist-height ratio

CONTENTS

		Page
INTRODU	CTION	1
AIM OF WORK		3
REVIEW (OF LITERATURE	
- Cha	apter I Obesity in children and adolescents	4
0	Epidemiology	5
0	Diagnosis	22
0	Management	42
• Cha	apter II Cardiac changes of obesity	63
0	Structural changes	66
0	Functional changes	74
0	Clinical issues	101
SUBJECTS	S AND METHODS	106
RESULTS		118
DISCUSSION		142
SUMMARY AND CONCLUSION		167
RECOMMENDATIONS		170
REFERENCES		172
ARABIC S	SUMMARY	

INTRODUCTION

The rising prevalence of childhood obesity poses a major public health challenge (*Lakshman et al.*, 2012). Childhood obesity is associated with a number of metabolic, cardiovascular and other disturbances, which include lipid abnormalities, altered glucose metabolism and type 2 diabetes, pulmonary disorders including obstructive sleep apnoea and reactive airway disease, a pro-inflammatory state and coagulation abnormalities (*Han et al.*, 2010).

associated with risk Obesity has been factors for cardiovascular disease (*Ice et al.*, 2009). A variety of adaptations /alterations in cardiac structure and function occur in the individual as adipose tissue accumulates in excess amount (Poirier et al., 2006). Obesity can affect the cardiac autonomic modulation, blood lipid levels and the physical capacity (Paschoal et al., 2009). Because of its maladaptive effects on various CV risk factors and its adverse effects on CV structure and function, obesity has a major impact on CV diseases, such as heart failure (HF), coronary heart disease (CHD), sudden cardiac death, and atrial fibrillation, and is associated with reduced overall survival (Lavie et al., 2009). Cardiac dysfunction during childhood may affect the quality of life in adulthood (Khositseth et al., 2006).

Waist circumference (WC) may predict cardiovascular risk better than body mass index (BMI) in adults. The relationships between WC and echocardiographic measurements known to predict adult cardiovascular risk have not yet been explored in children (*Mehta et al.*, 2009).

Pediatric echocardiography has clearly become the primary tool for describing and characterizing diastolic function in infants and children both with and without heart disease. It is established as an important noninvasive diastolic monitoring tool that allows serial assessment of pathologic diastolic disease in both primary myocardial and systemic disease states (*Frommelt*, 2006).

Obese children need a regular cardiovascular and metabolic screening to prevent the development of early cardiovascular damage (*Giordano et al.*, 2003).

AIM OF THE WORK

The present study aims at:

- Identifying the prevalence and types of cardiac abnormalities in a sample of Egyptian obese children.
- Identifying some risk factors that predispose to the development of cardiac abnormalities in these children.
- Determine anthropometric measurements which correlate to cardiac abnormalities.

Identifying obese children, at particular risk for cardiac abnormalities will allow to risk stratify these patients, in order to intensify therapy leading to better control and minimization of associated problems.

OBESITY IN CHILDREN AND ADOLESCENTS

Obesity is a public health problem that has raised concern worldwide. An exhaustive body of literature has emerged to show that overweight and obesity are major causes of comorbidities, including type II diabetes, cardiovascular diseases, various cancers and other health problems, which can lead to further morbidity and mortality (*Brown et al., 2009; Guh et al., 2009*). As the prevalence of obesity increases so does the prevalence of the comorbidities associated with obesity. For this reason it is imperative that health care providers identify obese children so that counselling and treatment can be provided (*Dietz and Robinson, 2005*).

Definition

Obesity is generally defined as the abnormal or excessive accumulation of fat in adipose tissue to the extent that health may be impaired. Measuring the level of adipose tissue and determining when it is likely to affect health is not an easy task (*Kiess et al., 2004; Chan and Woo, 2010*). For this reason, obesity is often assessed by means of indirect estimates of body fat (i.e., anthropometrics) (*Flodmark et al., 2004*).

Unfortunately, there is no uniform consensus on the definition of childhood obesity, and the lack of a standard definition and