BIOCHEMICAL STUDIES ON Solanum nigrum L. FRUITS EXTRACTS

By

YASSER SAED HELMY ALY

B. Sc. (Biotechnology), Fac. Agric., Cairo Univ., Egypt, 2002

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Biochemistry)

Department of Biochemistry
Faculty of Agriculture
Cairo University
EGYPT

2008

APPROVAL SHEET

BIOCHEMICAL STUDIES ON Solanum nigrum L. FRUITS EXTRACTS

M. Sc. Thesis By

YASSER SAED HELMY ALY

B.Sc. (Biotechnology), Fac. Agric., Cairo Univ., Egypt, 2002

Approved by:
Dr. KHALED MAAMOUN TAHA Professor of Biochemistry, Fac. Agric., Menoufia University
Dr. EMAM ABDEL MOBDEI ABD-RAHEEM Professor of Biochemistry, Fac. Agric., Cairo University
Dr. MAGDY ABD-ELALEEM SHALLAN

Date: / /

SUPERVISION SHEET

BIOCHEMICAL STUDIES ON Solanum nigrum L. FRUITS EXTRACTS

M. Sc. Thesis
By

YASSER SAED HELMY ALY

B. Sc. (Biotechnology), Fac. Agric., Cairo Univ., Egypt, 2002

SUPERVISION COMMITTEE

Dr. MAGDY ABD-ELALEEM SHALLAN Professor of Biochemistry, Fac. Agric., Cairo University

Dr. GABER EL-BAZ EL-DESOKY Professor of Biochemistry, Fac. Agric., Cairo University

Dr. HANAA FAWZY MOHAMED ALI Assistant Professor of Biochemistry, Fac. Agric., Cairo University Name of Candidate: Yasser Saed Helmy Aly Degree: M.Sc.

Title of Thesis: Biochemical Studies on *Solanum nigrum* L. Fruits Extracts. **Supervisors:** Prof. Dr. Magdy A. Shallan, Prof. Dr. Gaber B. El-Desoky,

Dr. Hanaa F. Ali

Department: Biochemistry **Approval:** / /

ABSTRACT

In this work, a *Solanum nigrum* ripe fruit ethanolic extract was made up, different antioxidant examination was carried out, and the result revealed that the extract have a high content of phenols compound and a great value of total antioxidant capacity, high reducing capacity. The extract also have a power to scavenge many types of free radical such as DPPH, nitric oxide and have a ferrous ion chelating activity and prevent Fe^{2+}/H_2O_2 -induced deoxyribose decomposition.

Biological experiment *in vivo* on experimental CCl₄-intoxicated male albino rats was carried out to evaluate the extract as therapy diet, extract ingestion during CCl₄-intoxication induced significant changes, in a dose-dependant manner, in serum total protein, albumin as well as the activity of GOT, GPT and ALP and total bilirubin content.

The values of total soluble proteins, albumin, globulin and Albumin/Globulin ratio were decreased in CCl₄-intoxicated rats at control. These decreased values were improved by the treatment with the extract. The ingestion of the studies extract into intoxicated rats produced improvements in the Albumin/Globulin ratio which increased paralleled with increasing the extract dose. These may be due to the improvements in albumin biosynthesis.

There is a high increasing in the serum activities of GOT, GPT, GOT/GPT ratio and ALP as well as increasing serum bilirubin contents in CCl4-intoxicated rats indicating considerable hepato-cellular injury compared to normal healthy control. The treatment with *Solanum nigrum* ethanolic extract caused a significant improvement of the functional status of liver.

The present study on kidney function revealed that CCl₄-ingestion caused a highly significant increase in serum uric acid contents but slightly changed serum urea (insignificant) compared to normal healthy control. The treatment of CCl₄-intoxicated rats with *Solanum nigrum* ethanolic extract improved these disturbances in serum uric acid.

The *Solanum nigrum* ethanolic extract exerted a cytotoxic effect in dose-dependant manner. There was a significant increase in percent of dead cells with increasing of the extract concentration used. It can be reported that the using of 3000 ppm of extract in MTT assay for treatment of EAC, mice Ehrlich Ascites Carcinoma cells, and AML, human adult Acute Myeloid Leukemia cell, induce about full death of AML and EAC cells.

Key words: *Solanum nigrum* L., Black nightshades, Antioxidant, Hepatoprotective, CCl₄, Anticancer, EAC, AML.

DEDICATION

I dedicate this work to my parents, specially my mother, for all the support they lovely offered along with my life and to my professors, my colleagues for their patience help along with the period of my post graduation and to my family, my wife, my friends.

ACKNOWLEDGEMENT

I wish to express my sincere thanks, deepest gratitude and appreciation to **Dr. Magdy A. Shallan**, **Dr. Gaber B. El-Desoky** Professors of Biochemistry, and **Dr. Hanaa F. Ali** Asst. Professor, Faculty of Agriculture, Cairo University for supervision, continued assistance and their guidance through the course of study and revision the manuscript of this thesis.

Grateful appreciation is also extended to all my colleagues in Biochemistry Department, Faculty of Agriculture, Cairo University.

CONTENTS

		page
INTRODUCTION		1
REVIEW OF LITERATURE		
1.	Chemical composition	4
2.	Biological activities of Solanum nigrum L	8
3.	Phytoremediation of heavy metals	27
MAT	ERIALS AND METHODS	32
1.	Source of samples	32
	Chemicals	32
3.	Preparation of plant extract	32
	Chemical analysis	32
	General phytochemical examination	34
	Antioxidant activity of Solanum nigrum L	35
7.		41
8.	In vitro assay of anticancer activity	51
	Statistical analysis	54
	ULTS AND DISCUSSION	55
1.		55
2.		55
3.	1 •	56
4.		66
5.		89
SUMMARY		95
	ERENCES	98
	BIC SUMMARY	70

LISTT OF TABLES

No.	Title	Page
1.	Chemical composition of <i>Solanum nigrum</i> L. ripe fruits	55
2.	Phytochemical screening of <i>Solanum nigrum</i> L. ripe fruits ethanolic extract	56
3.	Total phenols contents and antioxidant capacity of <i>Solanum nigrum</i> L. ethanolic extract	56
4.	Solanum nigrum L. ethanolic extract scavenging activity of DPPH radical.	58
5.	Solanum nigrum L. ethanolic extract scavenging activity of nitric oxide	59
6.	Solanum nigrum L. ethanolic extract protection activity against Fe ²⁺ /H ₂ O ₂ -induced decomposition of deoxyribose.	61
7.	Solanum nigrum L. ethanolic extract metal chelating activity	62
8.	Solanum nigrum L. ethanolic extract reductive capability	65
9.	Effects of <i>Solanum nigrum</i> L. ethanolic extract on total proteins, albumin and globulin of experimental CCl ₄ -intoxicated male albino rats.	68
10.	Effects of <i>Solanum nigrum</i> L. ethanolic extract on serum liver enzymes activity (AST, ALT and ALP) of experimental CCl ₄ -intoxicated male albino rats	69

11.	bilirubin level of experimental CCl ₄ -intoxicated male albino rats.	78
12.	Effects of <i>Solanum nigrum</i> L. ethanolic extract on liver lipid per-oxidation of experimental CCl ₄ -intoxicated male albino rats.	80
13.	Effects of <i>Solanum nigrum</i> L. ethanolic extract on serum urea and uric acid contents of experimental CCl ₄ -intoxicated male albino rats.	85
14.	Solanum nigrum L. ethanolic extract anticancer activity against EAC and AML cancer cells	91

LISTT OF FIGURES

No.	Title	Page
1.	Solanum nigrum L. ethanolic extract scavenging activity of DPPH radical	59
2.	Solanum nigrum L. ethanolic extract scavenging activity of nitric oxide.	60
3.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	62
4.	Solanum nigrum L. ethanolic extract metal chelating activity	63
5.	Solanum nigrum L. ethanolic extract reductive capability	65
6.	Effects of <i>Solanum nigrum</i> L. ethanolic extract ingestion on total abumin in experimental CCl ₄ -intoxicated male albino rats.	70
7.	Effects of <i>Solanum nigrum</i> L. ethanolic extract ingestion on Globulin in experimental CCl ₄ -intoxicated male albino rats.	71
8.	Effects of <i>Solanum nigrum</i> L. ethanolic extract ingestion on Alb/Glob ratio in experimental CCl ₄ -intoxicated male albino rats.	71
9.	Effects of <i>Solanum nigrum</i> L. ethanolic extract ingestion on total protein in experimental CCl ₄ -intoxicated male albino rats.	73
10.	Effects of <i>Solanum nigrum</i> L. ethanolic extract ingestion on AST activity in experimental CCl ₄ -intoxicated male albino rats.	74

No.	Title	Page
11.	Effects of <i>Solanum nigrum</i> L. ethanolic extract ingestion on ALT activity in experimental CCl ₄ -intoxicated male albino rats.	75
12.	Effects of <i>Solanum nigrum</i> L. ethanolic extract ingestion on ALP activity of experimental CCl ₄ -intoxicated male albino rats.	76
13.	Effects of <i>Solanum nigrum</i> L. ethanolic extract ingestion on AST/ALT activity ratio in experimental CCl ₄ -intoxicated male albino rats	77
14.	Effects of <i>Solanum nigrum</i> L. ethanolic extract on total bilirubin level of experimental CCl ₄ -intoxicated male albino rats.	79
15.	Effects of <i>Solanum nigrum</i> L. ethanolic extract on liver lipid peroxidation of experimental CCl ₄ -intoxicated male albino rats.	81
16.	Effect of <i>Solanum nigrum</i> L. ethanolic extract on urea content of experimental CCl ₄ -intoxicated male albino rats.	80
17.	Effects of <i>Solanum nigrum</i> L. ethanolic extract on serum uric acid content of o CCl ₄ -intoxicated experimental male albino rats.	86
18.	Anticancer effect of <i>Solanum nigrum</i> L. ethanolic extract on mice Ehrlich Ascites Carcinoma cell (EAC) and human adult Acute Myeloid Leukemia (AML)	0.6
	cancer cells by MTTassay	86

LIST OF APPREVIATIONS

ALP alkaline phosphatase

ALT serum Alanine amino transferase AST serum Aspartate amino transferase

CAT Catalase

DMSO dimethylsulphoxide

DPPH 1,1-diphenyl-2-picrylhydrazyl
EDDS S,S-ethylenediaminedissucinic acid
EDTA ethylenediaminetetraacetic acid

GOT Glutamate Oxaloacetate Transaminase GPT Glutamate Pyruvate Transaminase

GPx Glutathione Peroxidase
GST Glotathione S-transferase

HCT-116 The human colorectal carcinoma cells

Hep3B hepatocellular carcinoma cells HepG2 a human liver cancer cell line

HMG-CoA hepatic 3-hydroxy-3-methylglutaryl coenzyme A

HT-29 Colon Cancer Cell Line

IC₅₀ The half maximal inhibitory concentration

iNOS
 LDL
 MCF-7
 NF-κB
 induced nitric oxide synthesis
 Low Density Lipoprotein
 Human Breast cancer cells
 Nuclear factor kappa B

NO Nitric oxide

PARP poly ADP-ribose polymerase PBS phosphate buffer saline

PCA Protocatechuric acid
PKCα Protein kinase C alpha
ROS Reactive Oxygen Species
SOD Superoxide dismutase
TC Total Cholesterol
TCA Trichloroacetic acid

TG Triglyceride

TNF Tumour nicrosis factor

U14 cervical cancer of tumor-bearing mice

WRL-68 a human feral liver cell line

INTRODUCTION

In recent years, there has been a global trend toward the use of natural substances present in fruits, vegetables, oilseeds, and herbs as antioxidants and functional foods (Farr, 1997; Wang *et al.*, 1997 and Kitts *et al.*, 2000). Several of these substances are believed to have potential value as cancer chemo-preventive or therapeutic agents within the human body.

Solanum nigrum (SNL) is a common herb that grows wildly and abundantly in open fields. It has been used in traditional folk medicine because of its diuretic and antipyretic effects. In particular, it has been used to cure inflammation, edema, mastitis and hepatic cancer for a long time ago in oriental medicine (Sultana et al., 1995 and Prashanth et al., 2001). The fruit extract of SNL has been reported to have a strong, dose-dependent cytotoxicity and the ability to induce significant DNA damage in human lymphocytes (Yen et al., 2001). It also has significant hydroxyl radical scavenging potential (Prashanth et al., 2001). SNL contains steroidal glycosides, steroidal alkaroids, steroidal oligoglycosides, solamargine and solasonine (Saijo et al., 1982).

Several studies have been conducted to investigate the nutritive and medicinal value of the 'vegetable black nightshades'; it is evident that these species constitute nutritious vegetables. The leaves can provide appreciable amounts of protein and amino acids, minerals including calcium, iron and phosphorus, vitamins A and C, fat and fiber, as well as appreciable amounts of methionine, an amino acid scarce in other vegetables (Fortuin and Omta, 1980 and FAO, 1988). Moreover the berries can apparently yield high mounts of iron, calcium

and vitamin B (Fortuin and Omta, 1980), and appreciable amounts of vitamin C and carotene. The seeds too contain vitamin C and carotene (Watt and Breyer-Brandwijk, 1962).

Various parts of many of the species belonging to the section *Solanum* are widely used medicinally throughout the world. Their use as such is recorded from the earliest times and various species, especially *Solanum nigrum*, are mentioned and often illustrated in al of the early Herbals, with Dioscorides being one of the first to record their medicinal properties. Since then this 'species' has continued to be widely acclaimed for its medicinal effects in every country in which the taxon is found. The bruised fresh leaves used externally are reputed to ease pain and reduce inflammation; they are applied to burns and ulcers by the Arabs. Leaf juice has also been used for ringworm, gout and earache, while it is also reputed to be a good gargle and mouthwash when mixed with vinegar (Grieve, 1931).

In Japan Saijo *et al.* (1982) observed that immature fruits of *Solanum nigrum* contain steroidal glycosides which show considerable anticancer activity. These glycosides could be solasonine, solamargine, diosgenin and solasodine.

In East Africa the raw fruit is chewed and swallowed for treatment of stomach ulcers or for general abdominal upsets which lead to continued stomach-ache. Infusions of leaves and seeds are rubbed onto the gums of children who have developed crooked teeth. Pounded leaves are soaked in water, fermented and used for the treatment of boils, ulcers and swollen glands. Unripe berries are used to treat ring

worms. Various parts of the plant are also believed to cure malaria, black fever, dysentery and urinary infection (Kokwaro, 1976).

The present investigation was undertaken to detect the presence of some fruit extract secondary metabolites and evaluate their activity as antioxidant, anticancer and hepatoprtectant.