

The Impact of Multislice Computed Tomographic Angiography on the Diagnosis and Management of Congenital Heart Disease

Thesis for partial fulfillment of M.D degree in Cardiology

Submitted by
MOHAMED ABD EL-RAZIK GHAZY
M.B.B.Ch, M.Sc

Under supervision of

Prof.Dr. Maiy Hamdy El-SayedProfessor of Cardiology - Ain Shams University

Prof.Dr. Ghada Samir El-Shahed

Professor of Cardiology - Ain Shams University

Dr. Hebatalla Mohamed AtiaLecturer of Cardiology - Ain Shams University

Dr. Alaa Mahmoud Roushdy

Lecturer of Cardiology – Ain Shams University

Dr. Hasan El-Sayed Abd El-Monem

Radiodiagnosis department El-Galaa Military Family Hospital

Ain Shams University 2011

Index of Contents

\mathbf{T}	•	O T	• 4	4
K	eview	At I	iters	atiire
1.		\ /I I	/	

Congenital Heart Disease: Multimodality Imaging	1
-Echocardiography	2
- Cardiac catheterization	4
- Cardiac MRI	6
- MRI versus MSCT	10
Cardiac Multi-Slice CT	13
- Basic principles of MSCT	16
- Multislice CT system design	22
- Limitations and pitfalls with multi-slice CT	27
- Post-processing imaging modalities	28
- Clinical goals for cardiac and thoracic MSCT	31
- Technical aspects and imaging protocols for	
pediatric cardiac MSCT	34
CT Radiation Exposure: A public Health Issue	44
Congenital Heart Disease: CT Oriented Vascular And	
Anatomy and Management	55

Patients and Methods	108
Results	127
Discussion	180
Conclusion and Recommendations	193
Summary	194
References	198
Arabic Summary	

List of Abbreviations

ADC Analogue digital converter

ALARA As low as reasonably achievable

ALCAPA Anomalous Left Coronary Artery from Pulmonary Artery

AS Aortic Stenosis

ASD Atrial septal defect

BEIR Biological effect of ionized radiation

CAT Computed axial tomography

CCA Common Carotid Artery

CHD Congenital heart disease

CMR Cardiac magnetic resonance

cMPR Curved multiplanar reformatting

CoA Coarctation of Aorta

CS Coronary sinus

CT Computed tomography

DLP Dose length product

DORV Double Outlet Right Ventricle

ECG Electrocardiogram

EMI Electrical and Musical Industries

EP Electrophysiology

FDA Food and Drug Administration

FOV Field of view

FSV Functioning single ventricle

Gy Gray; radiation dose measurement unit

HU Housfield unit

HLHS Hypoplastic Left heart syndrome

IAA Interrupted aortic arch

IEC International electronical commission

IVC Inferior Vena Cava

Kg Kilogram

kVp Kilovolt potential

LA Left Atrium

LPA Left pulmonary artery

LV Left ventricle

mA Milliampere

MAPCA Major Aorto Pulmonary Collateral Artery

mAs Milliampere second

MBT Modified Blalok-Taussig

MDCT Multi detector row computed tomography

MIP Maximum intensity projection

MPR Multiplanar reformatting

MR Magnetic resonance

MRI Magnetic resonance imaging

MSCT Multi slice computed tomography

mSv MilliSievert; radiation dose measurement unit

NSF Nephrogenic systemic fibrosis

PA Pulmonary Artery

PAPVD Partial anomalous pulmonary venous drainage

PAVM Pulmonary Arterio-Venous malformation

PDA Patent Ductus Arteriosus

PPG Peak Pressure Gradient

PS Pulmonary stenosis

RA Right atrium

RAA Right aortic arch

RPA Right pulmonary artery

RV Right Ventricle

SSFP Steady state free precession

SVC Superior Vena Cava

TAPVD Total anomalous pulmonary venous drainage

ToF Tetralogy of Fallot

UK United Kingdom

ULPV Upper Left Pulmonary Vein

US United States

VR Volume rendering

VSD Ventricular septal defect

List of Figures

Figure 1: Graph showing trends in cardiac imaging.	5
Figure 2: MRI bright blood image shows dilated RV.	8
Figure 3: Contrast MRI shows tight CoA.	9
Figure 4: Shared and unique features of MSCT and MRI.	11
Figure 5: Pediatric patients' selection for CT or MRI.	11
Figure 6: Diagram for CT scanners.	15
Figure 7: Modern MSCT machine.	16
Figure 8: CT machine from inside.	18
Figure 9: Moore's law for CT detectors.	19
Figure 10: Number of new CT slices at time of marketing.	20
Figure 11: Examples of fixed and adaptive detectors arrays.	24
Figure 12: Dual source CT system.	26
Figure 13: MSCT MPR oblique view shows the IVS.	28
Figure 14: Curved MPR image shows the RCA course.	29
Figure 15: MSCT MIP image of the RCA.	29
Figure 16: MSCT VR image of the chest wall.	30
Figure 17: Retrospective ECG triggered MSCT scanning.	40

Figure 18: Management Algorithm for PA anomalies.	56
Figure 19: Broncho-pulmonary segments.	57
Figure 20: MRI shows right MBT shunt.	62
Figure 21: MSCT angiography shows right MBT shunt.	62
Figure 22: MR angiography after different Fontan procedures.	69
Figure 23: MSCT VR image shows Glenn shunt.	70
Figure 24: Development of the aortic arch.	73
Figure 25: Coarctations of the aorta.	81
Figure 26: MSCT image shows aortic coarctation.	81
Figure 27: MRI VR image shows truncus arteriosus III.	87
Figure 28: MSCT axial image shows AP window.	89
Figure 29: MSCT VR image shows pulmonary sequestration	. 90
Figure 30: MSCT angiography of systemic venous anomalies	s. 96
Figure 31: MRI of bronchial sidedness in abnormal situs.	100
Figure 32: MSCT angiography of anomalous RCA origin.	102
Figure 33: anomalous origin of LCA.	103
Figure 34: MR angiography of unroofed CS post repair.	107
Figure 35: CT lightspeed VCT XT 64-detectors row scanner	. 113
Figure 36: Double barrel pump injector.	114

Figure 37: Sedated infant on the machine.	115
Figure 38: Injector touch screen.	117
Figure 39: Work station screen.	120
Figure 40: MSCT angiography shows subaortic VSD.	120
Figure 41: MSCT VR image of an abnormal aortic arch. 121	
Figure 42: MSCT MIP image of TAPVD.	122
Figure 43: A copy from patient radiation dose.	125
Figure 44: Gender distribution among study population. 127	
Figure 45: Distribution of cases according to scan target. 129	
Figure 46: Similarity between cardiac cathertization and MS	SCT
angiography in assessment of pulmonary artery.	
Figure 47: Superiority of MSCT over catheterization in	
assessment of MAPCA.	131
Figure 48: Comparison between MSCT and catheterization	
in assessment of left MBT shunt and RPA.	133
Figure 49: MSCT images shows patent PDA stent.	134

Figure 50: MS	CT shows occluded right external iliac arter	ry.
Figure 51: MS6 135	CT VR image shows LPA origin stenosis.	
Figure 52: MS	CT showing supravalvular AS.	141
Figure 53: Cha 143	rt representing arch anomalies within the st	tudy.
Figure 54: MSC	CT VR image shows tight CoA and hypoplastic arc	h 144
Figure 55: MSe 145	CT shows aortic interruption type B.	
Figure 56: MSo 145	CT of Aortic interruption type A and B.	
Figure 57: MS	CT of double aortic arch.	146
Figure 58: MSo 146	CT of double arch compressing the trachea.	
Figure 59: MS	CT of right aortic arch.	148
Figure 60: MS0 149	CT of right arch with aberrant left subclavian artery	<i>7</i> .
Figure 61: MS	CT of bovine arch and CoA.	149
Figure 62: MS6 150	CT of separate origin of left vertebral artery	y.
Figure 63: MS	CT of tight CoA and anterior collaterals.	153
Figure 64: MS	CT of preductal CoA.	153

Figure 65: MSCT of post operative aortic recoarctation. 154	
Figure 66: MSCT of post balloon aortic recoarctation. 155	
Figure 67: MSCT of post CoA stent.	156
Figure 68: MSCT of truncus arteriosus II and CoA.	159
Figure 69: MSCT axial image of a large AP window. 160.	
Figure 70: MSCT VR image of a large AP window.	160
Figure 71: MSCT of lung sequestration.	161
Figure 72: MSCT of normal pulmonary venous drainage. 164	
Figure 73: MSCT of polysplenia and PAPVD.	166
Figure 74: MSCT of TAPVD to CS.	167
Figure 75: MSCT of infracardiac TAPVD.	167
Figure 76: MSCT of supracardiac TAPVD.	168
Figure 77: MSCT of infracardiac PAPVD.	168
Figure 78: MSCT of left SVC.	170
Figure 79: MSCT of interrupted IVC and azygous continuation.171	
Figure 80: MSCT of Glenn shunts.	171

Figure 81: MSCT of the spleen in different situs. 173

List of Tables

Table 1:	Capacity of imaging modalities in assessment of congenital heart disease.	6
Table 2:	CT chest scan protocols for different CT generations.	22
Table 3:	Different coefficient factors for conversion between absorbed and effective radiation.	46
Table 4:	Radiation doses in different radiological examinations	47
Table 5:	ESC recommendations 2010 for interventions for coarctation of aorta	83
Table 6:	Amount of contrast material Adjusted to body weight	114
Table 7:	Distribution of cases according to age	128
Table 8:	Distribution of cases according to body weight	128
Table 9:	Reasons for MDCT referral.	129
Table 10:	The echocardiographic diagnoses of group I.	130
Table 11:	MDCT main pulmonary arterial abnormalities among group I.	132
Table 12:	Associated arch anomalies in group I	136

Table 13:	Comparison between the cardiac catheterization and MDCT findings in group I.	138
Table 14:	Additional MDCT findings regarding the assessment of PA confluence by echocardiography	139
<u>Table 15:</u>	Primary diagnoses of patients in group II.	140
Table 16:	Comparison between aortic arch echocardiographic and MDCT angiographic findings among the study population	142
<u>Table 17:</u>	Abnormal aortic arch sidedness and vessels arrangement	147
Table 18:	Comparison between echocardigraphic and MDCT angiographic findings regarding aortic coarctation.	151
Table 19:	Distribution of the native aortic coarctation according to MDCT findings	152
Table 20:	Primary diagnoses of patients with aorto- pulmonary connections.	158
Table 21:	Cases of lung sequestration	161
Table 22:	Distribution of PDA among patients with CHD who were referred for MDCT	162
Table 23:	Distribution of the patients having anomalous pulmonary venous drainage	164