

Ain shams university Faculty of Medicine Department of Anesthesia and Intensive care and Pain Management

COMPARATIVE STUDY BETWEEN ULTRASOUND GUIDED ILIOINGUINAL/ILIOHYPOGASTRIC NERVE BLOCKS AND CAUDAL EPIDURAL ANESTHESIA IN LOWER ABDOMINAL SURGERY IN PEDIATRIC ANESTHESIA

Presented by:

AZZA MOHAMED LOTFY YOUSSEF NASER

М.В.В.СН.- M.Sc in Anesthesia

Supervised by:

Professor DR. / NABIL MOHAMED ABD EL MOATTI

Professor of Anesthesia and Intensive care Faculty of Medicine –Ain shams university

Professor DR. / HANY MOHAMED MOHAMED EL ZAHABY

Professor of Anesthesia and Intensive care Faculty of Medicine –Ain shams university

DR./EMAD EL DIN MANSOUR ABD EL AZIZ

Assistant professor of Anesthesia and Intensive care Faculty of Medicine –Ain shams university

DR. / Noha El Sayed Hussin

Lecturer of Anesthesia and Intensive care Faculty of Medicine –Ain shams university

> Ain shams university Faculty of Medicine 2011

بسو الله الرحمن الرحيم

حدق الله العظيم

(البقرة : ٣٢)

ACKNOWLEDGEMENTS

THANKS ARE ALL TO GOD, FOR BLESSING ME THIS WORK UNTIL IT REACHED ITS END, AS A LITTLE PART OF HIS GENEROUS HELP THROUGHOUT MY ENTIRE LIFE.

I WOULD LIKE TO EXPRESS MY DEEPEST GRATITUDE TO PROF. DR. NABIL ABD EL MOATTI, PROFESSOR OF ANAESTHESIA AND INTENSIVE CARE, FACULTY OF MEDICINE, AIN SHAMS UNIVERSITY, FOR HIS SUPPORT, GUIDANCE AND ENCOURAGEMENT.

IT HAS BEEN AN HONOUR WORKING UNDER THE SUPERVISION OF PROF. DR. HANY MOHAMED EL ZAHABY, PROFESSOR OF ANAESTHESIA AND INTENSIVE CARE, FACULTY OF MEDICINE, AIN SHAMS UNIVERSITY, WHO HELPED ME IN EVERY WAY HE COULD.

I'M GREATLY INDEBTED TO ASSISTANT PROF DR. EMAD EL DIN MANSOUR, ASSISTANT PROFESSOR OF ANAESTHESIA AND INTENSIVE CARE, FACULTY OF MEDICINE, AIN SHAMS UNIVERSITY, WHO PROVIDED ME WITH INTELLECTUAL AND TECHNICAL SUPPORT FROM THE VERY BEGINNING OF THIS WORK.

I'M GREATLY THANKFUL TO **D**R. **NOHA EL SAYED HUSSIN,** LECTEURER **A**NAESTHESIA AND **I**NTENSIVE CARE, **F**ACULTY OF **M**EDICINE, **A**IN **S**HAMS **U**NIVERSITY, FOR GREAT HELP AND COOPERATION DURING THE WHOLE WORK.

AZZA LOTFY

CONTENTS

AcknowledgementsI
List of tablesIII
List of figuresIV
• List of abbreviationsVI
• INTRODUCTION1
• AIM OF THE WORK3
• REVIEW OF LITERATURE
Chapter 1. ULTRASOUND GUIDED PERIPHERAL
NERVE BLOCK4
Chapter 2. ILIOINGUINAL/ILIOHYPOGASTRIC
NERVE BLOCK IN PEDIATRICS28
Chapter 3. CAUDAL EPIDURAL ANESTHESIA IN
PEDIATRICS38
• PATIENTS AND METHODS54
• RESULTS62
• DISCUSSION84
• ENGLISH SUMMARY99
• REFERENCES101
ARABIC SUMMARY

LIST OF TABLES

No	Table	Page
Table (1)	Pharmacokinetics pattern of local anesthetics in neonates and small infants	41
Table (2)	Modified Objective Pain Score (MOPS)	60
Table (3)	Demographic data	63
Table (4)	Intraoperative heart rate changes	66
Table (5)	Intraoperative respiratory rate changes	68
Table (6)	Intraoperative MAP changes	70
Table (7)	Postoperative heart rate changes	72
Table (8)	Postoperative MAP changes	74
Table (9)	Postoperative MOPS changes	76
Table (10)	Comparison between both groups as regard duration of postoperative analgesia	77
Table (11)	The dose of bupivacaine needed to surround both nerves using ultrasound technique	78
Table (12)	The correlation between doses needed to surround both nerves with age and weight of patients	78
Table (13)	Distance from skin to ilioinguinal/iliohypogastric nerves and the distance between the ilioinguinal /iliohypogastric nerve and peritoneum	79
Table (14)	The correlation between the distances from skin to ilioinguinal/iliohypogastric nerves (mm), and from the ilioinguinal/iliohypogastric nerves to peritoneum with the age and the weight of patients	80
Table (15)	The need of needle repositioning in group B	81
Table (16)	The incidence of complications in group A	82
Table (17)	The incidence complications in group B	83

LIST OF FIGURES

No.	Figure	Page
Figure (1)	Ultrasound wave form	5
Figure (2)	Pulse Repetition Frequency (PRF)	7
Figure (3)	Direct and indirect piezoelectric effect	8
Figure (4)	Axis of scan: Transverse scan, Longitudinal scan	10
Figure (5)	Needle-probe alignment	12
Figure (6)	Axis of intervention. Out-of-plane and in-plane techniques.	12
Figure (7)	Perineural injection	17
Figure (8)	Ultrasonographic appearance of intraneural injection	18
Figure (9)	hydrodissection technique	20
Figure (10)	Different ultrasound transducers	22
Figure (11)	Time gain compensation	25
Figure (12)	Anatomic relationship of the ilioinguinal/ iliohypogastric nerve	29
Figure (13)	Surface landmark for ilioinguinal block	30
Figure (14)	Needle maneuvers to block ilioinguinal nerve (Fan technique)	31
Figure (15)	Sonoantomy at the ilioinguinal/iliohypogastric nerve block location immediately medial to the ASIS	36
Figure (16)	Probe and needle position in ultrasound-guided ilioinguinal/iliohypogastric nerve block.	37
Figure (17)	Patient Positioning in caudal block	45
Figure (18)	Landmarks for caudal block	46
Figure (19)	Needle advancement in caudal block	47
Figure (20)	Dermatomal distribution of different volumes of local anesthetic for single-shot caudal block	50
Figure (21)	Site of misplacement of the needle during caudal anesthesia	52
Figure (22)	A LOGIQ P5 portable ultrasound unit.	57
Figure (23)	Linear ultrasound probe	57
Figure (24)	Demographic data	64
Figure (25)	Intraoperative heart rate changes in both groups	66

Figure (26)	Intraoperative respiratory rate changes in both groups	68
Figure (27)	Intra operative MAP changes in both groups	70
Figure (28)	Postoperative heart rate changes in both groups	72
Figure (29)	Postoperative MAP changes in both groups	74
Figure (30)	Postoperative MOPS changes in both groups	76
Figure (31)	Comparison between both groups as regard duration of postoperative analgesia	77
Figure (32)	The need of needle repositioning in group B	82
Figure (33)	The incidence of complications in group A	83

LIST OF ABBREVIATIONS

Abbreviation	Meaning
ASA	American society of anesthesiologists
ASIS	anterior superior iliac spine
b/m	beat per minute
CBC	Complete blood count
cm	Centimeter
CNS	Central nervous system
D5W	Dextrose 5% in water
DGC	Depth-gain compensation
ECG	Electrocardiogram
Hz	Hertz
IH	Iliohypogastric
IN	Ilioinguinal
IV	Intravenous
Kg	Kilogram
kHz	Kilohertz
LA	Local anesthetic
m/sec	Meter per second
MAC	Minimum alveolar concentration
MHz	Megahertz
ml	Milliliter
mm	Millimeter
mmHg	Millimeter mercury
PL	Pulse length
PRF	Pulse Repetition Frequency
TGC	Time gain compensation
US	Ultrasound
USGRA	Ultrasound-guided regional anesthesia

mcg/Kg	Microgram per kilogram
MOPS	Modified Objective Pain Score
ml/kg	Milligram per kilogram
MAP	Mean arterial blood pressure
min	Minute
mg/kg	Milligram per kilogram
P	Probability
SD	Standard deviation
RR	Respiratory rate
HR	Heart rate
Hr	Hour
CHIPPS	Children and Infants Postoperative Pain Scale
vs.	Versus
%	Percent
2D	Two-dimensional

INTRODUCTION

INTRODUCTION

Over 20 years ago, a survey reported that 40% of pediatric surgical patients experienced moderate or severe postoperative pain and that 75% had insufficient analgesia. Since that, a range of safe and effective techniques have been developed to overcome this problem (*Lonnqvist and Morton*, 2005).

Regional anesthetic techniques have been gained considerable popularity for use with pediatric patients. The primary advantage of regional supplementation is lowering general anesthetic requirements intraoperatively and providing good postoperative pain relief (Morgan and Mikhail, 1996).

Caudal anesthesia is the most frequently used regional technique in children; accounting for almost 50% of all regional techniques (*Dalens*, 1995). Its popularity is due its simplicity and high success rate (*Prosser et al*; 1997).

The ilioinguinal/iliohypogastric nerve block is also a popular regional anesthetic technique for surgical procedures in the sensory area of the ilioinguinal and iliohypogastric nerves for inguinal surgery (inguinal hernia repair or orchidopexy) (*Markham et al.*, 1986), but the failure rate with this 'blind' technique is a disappointing 20–30%, even in experienced hands. In addition, complications such as colonic or small bowel punctures and pelvic hematoma have been described (*Amory et al.*, 2003).

The use of ultrasound in ilioingunal/iliohypogastric nerves block can greatly improve the efficacy of the block as ultrasound allows real time visualization of both nerves and show the spread of local anesthetic injected around the nerve it also reduces the risk of complications associated with blind technique (*Willschke et al.*, 2005). The use of ultrasound significantly reduces the amount of local anesthetic used. This is particularly relevant for neonates and infants who are at risk of local anesthetic toxicity (*Smith et al. 1996*).

AIM OF THE WORK

AIM OF THE WORK

This study evaluated the use of ultrasound-guided ilioinguinal/iliohypogastric nerve blocks in pediatric patients regarding the efficacy of the block, the dose of local anesthetic administered and the incidence of complication in comparison with caudal epidural anesthesia regarding the efficacy, the onset of action and the duration of action of the block.

DEVEIL OF LITERATURE