Pediatric Bronchoscopes

An essay
Submitted for partial fulfillment of master degree in Pediatrics

By
Ashraf Farouk Farag
M.B.B.CH

Supervised by

Prof. Dr. Magda Yehia Hussein El Saifey

Professor of Pediatrics
Faculty of Medicine – Ain Shams University

Prof. Dr. Tharwat Ezzat Deraz

Professor of Pediatrics
Faculty of Medicine – Ain Shams University

Dr. Mervat Gamal El Din Mansour

Lecturer of Pediatrics
Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University 2010

مناظير الجهاز التنفسى في الأطفال

رسالة مقدمة توطئة للحصول على درجة الماجستير في طب الأطفال

مقدمة من: الطبيب / أشرف فاروق فراج بكالوريوس الطب والجراحة

تحت إشراف

الأستاذة الدكتورة / ماجدة يحى حسين

الصيفي

أستاذ طب الأطفال كلية الطب ـ جامعة عين شمس

الاستاذ الدكتور / ثروت عزت دراز أستاذ طب الأطفال كلية الطب عين شمس كلية الطب عين شمس

الدكتورة / مرفت جمال الدين منصور

مدرس طب الأطفال كلية الطب ـ جامعة عين شمس كلية الطب جامعة عين شمس 2010

الملخص العربي

الملخص العربي

تعتبر مناظير الشعب الهوائية أحد أهم الإجراءات التشخيصية والعلاجية التي تستخدم في طب الأطفال . وقد تم استخدام المنظار الصلب لأول مرة من قبل العالم الألماني كيليان وذلك عام 1897 ميلادي,كما ساهم كثير من العلماء في تقدم استخدام مناظير الشعب الهوائية منهم العالم توماس اديسون وذلك عن طريق استخدام الضوء في المناظير ,وكثير من العلماء.

تقسم مناظير الشعب الهوئية إلى:

- 1- المنظار الصلب
- 2- منظار الألياف الضوئية والأنواع الجديدة منها.

والمنظار الصلب عبارة عن أنبوب معدنى مجوف يمرر من خلال الفم والمريض مستلق على ظهره, ويجرى تحت التخدير العام ويتم التنفس الصناعى للمريض عن طريق أنبوب المنظار أما مناظير الألياف الضوئية فهى أصغر من المناظير الصلبة وتأتى بمقاسات مختلفة وفيها مقاسات خاصة للأطفال وهذه المناظير مرنة ويوجد بها ألياف ضوئية ويوجد بها قناة لشفط السوائل والإفرازات وقناة أخرى لأخذ عينات من الأنسجة ,كما توجد منها أنواع جديدة أخرى أصغر حجما وأدق استخداما.

تستخدم مناظير الشعب الهوائية في كثير من الأغراض إما لأغراض تشخيصية أو أغراض علاجية وهذه الاستخدامات تختلف من المناظير الصلبة إلى مناظير الألياف الضوئية ,فالمناظير الصلبة تستخدم في طب الأطفال لأغراض عديدة منها:-

- 1- إزالة الأجسام الغريبة من الشعب الهوائية.
- 2- وضع دعامات هوائية لدعم وتوسيع الشعب الهوائية.
 - 3- طرق علاجية جديدة مثل العلاج بالليزر.
 - 4- تشخيص وعلاج المرضى الذين يسعلون دما .

أما مناظير الأليف الضوئية تستخدم في أغراض عديدة منها التشخيصية والعلاجية.

الملخص العربي

الاستخدام العلاجي	الاستخدام التشخيصي
1- إزالة إفرازات الشعب الهوائية	1- السعال المزمن في الأطفال.
والأجسام الغريبة .	2- الأطفال الذين يسعلون دما .
2- في حالات السعال المدمم في	3- التهاب ذات الرئة التي لا يستجيب
الأطفال .	للمضادات الحيوية .
3- العلاج الحراري في حساسية الصدر	4- التهاب الحويصلات الهوائية في
عند الأطفال	مرضى نقص المناعة في الأطفال
4- وضع علاجات كيماوية بالقرب من	
مناطق الأورام	5- أخذ عينات من الرئة في حالات
	الأورام والالتهابات المزمنة .

تستخدم مناظير الألياف الضوئية في العنايات المركزة للأطفال و ذلك في:

- 1- وضع أو تغير الأنابيب الحنجرية .
- 2- التأكد من وضع الأنبوبة الحنجرية في المكان الصحيح.
- 3- مناظرة القصبات الهوائية بعد إزالة الأنابيب الحنجرية .
- 4- ما بعد حالات الالتهاب الرئوي المصاحب لاستعمال التنفس الصناعي لمدة طويلة
 - 5- في حالات الناسور الشعبي البلوري و علاجه

ويعتبر منظار القصبات الهوائية إجراءً آمنا ولكن في حالات نادرة هناك احتمال ظهور بعض المضاعفات بعضها خاص باستخدام المنظار نفسه أو الأدوية المخدرة التي تستخدم قبل عمل المنظار و منها.

- 1- تشنج القصبة الهوائية.
 - 2- النزيف.
- 3- استرواح الرئة في حال أخذ عينة.
 - 4- نقص الأكسجين بالدم.
- 5- انتشار عدوي لأماكن أخري من الجهاز التنفسي .
 - 6- نقل عدوي من مريض إلي آخر.
- 7- غثيان و قيء هبوط بالضغط خفقان بالقاب.

الملخص العربي

يقوم الفريق الطبي قبل عمل المنظار بمراجعة الحالة الصحية للمريض و الأدوية التي يتناولها .كما يقوم الفريق الطبي بعمل بعض الفحوصات و التحاليل للمريض قبل عمل المنظار .. منها أشعة علي الصدر – عد الصفائح الدموية – صورة دم كاملة – بروثرومبين ,بعض الأطباء يقوم بعمل رسم قلب و نسبة البوتاسيوم و الكرياتتين بالدم و يتم إجراء المنظار في غرفة المناظير و في بعض المستشفيات في غرفة العناية المركزة أو غرفة العمليات و قبل المنظار الصلب يتطلب هذا استخدام تخدير كلي للطفل أما مناظير الألياف الضوئية فيتم عمل تخدير موضعي للحلق و مجري التنفس العلوي و قد يستخدم الطبيب مهدئا عن طريق الوريد أو العضل. و يتم إدخال المنظار عن طريق الفم أو الأنف و المريض مستلقي على ظهره .

و قد يتم إجراؤه و المريض في وضع الجلوس, و خلال المنظار يعطي المريض الأكسجين عن طريق الأنف و يتم مراقبة النبض و الأكسجين بالدم.

و يخضع المريض للمراقبة بعد عمل المنظار لمدة 1-2 ساعة كما ينصح المريض بعدم الأكل أو الشرب لمدة 4 ساعات بسبب تأثير المخدر الموضعي على عملية البلع مما يسبب احتمالية تحويل الأكل و الشرب إلى مجري التنفس.

و بعد كل عملية يتم تعقيم المنظار حسب إجراءات و مقاييس عالية الجودة و ذلك لمنع نقل العدوى و الأمراض من مريض إلي أخر و يتم فحص المنظار بشكل دوري للتأكد من عمله بصورة جيدة.

List of Contents

Title	Page
List of Abbreviation	i
List of Figures	ii
List of Tables	iv
Introduction and the Aim of the essay	1
Chapter I: Historical Review and development of	3
bronchoscope in pediatrics.	3
- History of development of bronchoscope	3
- Types of Bronchoscopes	5
- Rigid Bronchoscopes	5
- Flexible fiberoptic bronchoscopes	8
- New Types of fiberoptic	11
bronchoscopes	11
Chapter II: Anatomy of the larynx, Trachea and	13
Bronchi in pediatrics	
Chapter III: Indication and contraindication of	21
Bronchoscopy in pediatrics	21
- Indication of fiberoptic bronchoscopes	21
- Indication of Rigid bronchoscope	22
22- Indication of bronchoscopy in Pediatric	22
Intensive care unit Most important indication in padiatries	23
- Most important indication in pediatrics	ł
- Contra Indication of bronchoscopy Chapter IV - Complication of Bronchoscopy in	35
Chapter IV : Complication of Bronchoscopy in pediatrics	36
Chapter V : Patient's management in pediatrics.	41
- Procedures & Methods	41
- Patient preparation	42
- Premedication& Sedation	42
- Anesthesia	44
- Monitoring & support	45
- Route of Insertion	46
Chapter VI: Infection control in the Bronchoscopy	
suite in pediatrics .	47

- Pathogen Transmission by the Bronchoscope 47

List of Contents (Cont.)

Title	Page
- Sources of Contamination	49
- Bronchscope Reprocessing	51
- Cleaning Technique	54
- Disinfection	55
- Post Disinfection Handling	59
- Prevention of out Breaks	59
Chapter VII: Special Bronchosocopic Procedures in pediatrics.	
- Transbronchial Needle Aspiration	63
- Brocho Alveolar Lavage	79
- Air way stents	85
- Endoscopic Intubation	95
- Bronchoscopic laser Resection	98
Chapter VIII : Advances In bronchoscopes in pediatrics.	
- Virtual bronchoscopy	101
- Endobronchial ultra sound Transbronchial Needle Aspiration.	111
- Disease surveillance using broncho Alveolar lavage	116
Summary, Conclusion and Recommendations	123
References	127

List of Abbreviations

AIDS	Acquired Immune deficiency syndrome
AIR	Asthma Intervention Research
BAL	Broncho Alveolar lavage
CDC	Centers for Disease control
CF	Cystic fibrosis
COPD	Chronic obstructive pulmonary disease
CT	Computed Tomography
EBUS-	Endobronchial ultra sound – Transbronchial
TBNA	Needle Aspiration
ECG	Electro cardio Graph
ELF	Epithelial lining fluid
ERS	European Respiratory society
EUS-FNA	Transoesophagial Endoscopic ultra sound with
	fine Needle Aspiration
FB	Foreign body
FBA	Foreign body Aspiration
FFB	Flexible fiberoptic bronchoscopy
FOB	Fibroptic bronchoscope
FRC	Functional Residual capacity
HIV	Human Immunodeficiency virus
HU	Houns field units
IM	Intra Muscular
IV	Intravenous
LMA	Laryngeal Mask air way
MTB	Mycobacterium Tuberculosis
Nd: YAG	Neodymium – yttrium – aluminum – garnet
PICU	Pediatric Intensive care unit
PSB	Protected Specimen Brush
Rose	Rapid on-site evaluation
TBNA	Trans Bronchial Needle Aspiration
TTNA	Tran Thoracic Needle Aspiration
UK	United kingdom
VAP	Ventilator – Associated pneumonia
VC	Vocal cords

List of Figures

	List of Figures	
Fig.	Subject	Page
(1)	Set of Karl Storz rigid bronchoscopes, with	6
	internal channel for rigid telescopes.	6
(2)	12 mm Efer-Dumon bronchoscope (rigid tubes	
	only) for use in bronchi (long tube) or trachea	6
	(short tube).	
(3)	Efer-Dumon tube with side ports for contralateral	
	lung ventilation in case of selective ipsilateral	6
	bronchial intubation.	
(4)	Parts of FOB	9
(5)	Bronchoscopic images from a patient two years	12
	after lobectomy for adenocarcinoma.	12
(6)	Vocal cord palsies	18
(7)	Anatomy overview of the larynax nand	19
	tracheobronchial tree	
(8)	View of larynax at laryngoscopy	20
(9)	Examples of inorganic foreign bodies removed	24
	from children	
(10)	Examples of organic foreign bodies removed	25
	from children	
(11)	Radiopaque foreign body retrieved from the	26
	trachea of a one-year-old child.	
(12)	Forceps for removing foreign body in the	27
(4.5)	bronchus.	
(13)	Relations of the trachea	69
(14)	Relations of the trachea	70
(15)	Relations of the trachea	70
(16)	Angle of transbronchial puncture	73
(17)	Jabbing method	74
(18)	Hub against the wall method	74
(19)	Piggyback method	75
(20)	Correct and incorrect position of the metal needle	78
	prior to TBNA	, 0

List of Figures (Cont.)

List of Figures (Cont.)			
Fig.	Subject	Page	
(21)	Smooth-walled silicone Hood tracheobronchial	89	
	stent with Y configuration	89	
(22)	Noppen tygon tracheal stent with screw threads	90	
(23)	Silicone Dumon tracheal stent	90	
(24)	Studded hood silicone stent	91	
(25)	Schneider tracheal wallstent	92	
(26)	Single Cook-GianturcoZ-stent	92	
(27)	Schneider covered metal stent	93	
(28)	Rüsch Y-stent	94	
(29)	Schematic representation of the scanning	104	
	geometry for helical CT	104	
(30)	virtual bronchoscopy image	105	
(31)	(A) compared to progressively translucent virtual		
	bronchoscopic images (B-D) from a patient with	107	
	an enlarged right paratracheal lymph node	107	
	(shaded green).		
(32)	(P) causing near complete obstruction of the		
	trachea (T). (A) The "conventional" virtual		
	bronchoscopic image displays the mass from	107	
	above the vocal cords (VC). (B) Virtual	107	
	bronchoscopy has the advantage of imaging the		
	airway beyond the mass.		
(33)	CT-scan (left) and integrated FDG-PET/CT scan	113	
	images	110	

List of Tables

Table	Subject	Page
(1)	Different sizes of Pediatric flexible	
	bronchoscopes	9
(2)	Pros and cons of flexible bronchoscope	10
(3)	Comparison between rigid bronchoscope and	
	fiberoptic bronchoscope	10
(4)	Indications of FOB	21
(5)	Contraindications to bronchoscopy	35
(6)	Complications of bronchoscopy	36
(7)	Drug Dose and route Onset and duration Side	
	effects	43
(8)	Sources Of Contamination	49
(9)	Reprocessing Terminology	51
(10)	Recommendations for bronchoscope reprocessing	52
(11)	Indications for transbronchial needle aspiration	63

Introduction

Pediatric bronchoscope is used for wide indications, and increasingly used in many contexts, including pediatric and neonatal intensive care units. Pediatric bronchoscope is indicated when the benefits out weigh its risks and when it is the best way to obtain diagnostic information (Payne et al., 2003). Indications of Pediatric bronchoscope are either Indications diagnostic or therapeutic. for diagnostic bronchoscope vary with the age of the patient. In children a normal bronchoscopic examination can be of great value, the definitive exclusion of suspected problems may be as important as a specific finding.

The diagnostic yield of fibreoptic bronchoscope can be increased by the informations obtained with bronchoalveolar lavage and biopsy of the bronchial mucosa. The evaluation of airways obstruction, which may involve the upper or lower airway or both, is the most common indication for fibreoptic bronchoscope in children (Bush et al., 2003).

The indication for therapeutic bronchoscope primarily involves the restoration of airway patency. Rigid bronchoscope is needed to remove foreign bodies or large resistant plugs (Midulla et al., 2003).

Fibreoptic bronchoscope can be used in order to perform special procedures, such as biopsy of endobronchial lesions, biopsy and brushing of bronchial mucosa, transbronchial biopsy, bronchoscopic intubation and bronchoalveolar lavage, it is also a tool to administer drugs such as surfactant or deoxyribonuclease (Nakamura et al., 2003).

1

Aim of the essay

This is an over view on the applications of bronchoscopy in Pediatrics .

The essay discusses the following items in details:

- Historical Review and development of bronchoscope
- Anatomy of the larynx, Trachea and Bronchi
- Indication and contraindication of Bronchoscopy
- Complication of Bronchoscopy
- Patient's management
- Infection control in the Bronchoscopy suite
- Special Bronchsocopic Procedures
- Advances In bronchoscopes

Historical Review and Development of Bronchoscope

Rigid bronchoscopy has been practiced for more than 100 years ago. Previously ignored by many pulmonologists, the rigid bronchoscope is now increasingly used in patients with central tracheobronchial airway obstruction (Ernst et al., 2003).

Rigid bronchoscopy was first performed in 1897 by Gustav Killian in order to remove a piece of pork bone impacted in the right mainstem bronchus of a 63-year-old farmer. Killian, who had not yet invented a rigid bronchoscope, used a Mikulicz-Rosenheim rigid esophagoscope. Long rigid forceps were used to remove the foreign body, thus avoiding a tracheotomy However, many rigid tubes had been used previously for endoscopic examination. In 1868, for example, Kussmaul used the combination of a Desormaux endoscope and a rigid tube to inspect the esophagus and stomach. Direct visualization was hampered by the lack of satisfactory illumination. Throughout the 1890s, Killian continued to experiment with rigid metal tubes in cadavers and patients. In 1898, he described the extraction of tracheobronchial foreign bodies in three additional patients. direct **Applications** of laryngoscopy and eventually bronchoscopy were enhanced by the increased use of cocaine as a local anesthetic (Tyson et al., 1957).

Thomas Edison was indirectly responsible for further advances in rigid bronchoscopy. In the late 1800s, for example, miniaturization of lamps was possible and was used primarily for distal illumination of small tubes. However, Killian (similar to many of his contemporaries) preferred proximal illumination techniques. Chevalier Jackson in Philadelphia was instrumental in bringing rigid bronchoscopy to the United States and in developing the modern rigid bronchoscope (Jackson et al., 1928).

He improved the rigid esophagoscope, perfected oral endoscopic techniques, and in 1904 designed an endoscope to which a small light could be placed at the distal end. Other advances included the development of the optical telescope by Boyles and the solid rod lens optical systems by Hopkins. Throughout the first half of the 20th century, the rigid bronchoscope was most commonly used for removal of foreign bodies. After 1950, some patients with central airways obstruction from tumors underwent rigid bronchoscopic resection; however, complications related to bleeding or anesthesia prohibited its widespread use in this setting (Grillo, 2003).

In the 1980s, rigid bronchoscopy regained popularity due largely to increasing applications of therapeutic bronchoscopy and to the pioneering work of Jean-Francois Dumon of Marseille, France. He and several other endoscopists authored much of the early literature relating both to therapeutic bronchoscopy for the removal of tracheobronchial neoplasms and to application of laser (light amplification by stimulated emission of radiation) for palliation of central airway obstruction. Many other physicians and scientists also deserve credit for the development, maintenance, and teaching of rigid bronchoscopy, including:

- Philip Bozzini, who is the father of the illuminator as a light source for laryngeal inspection.
- Horace Green, who demonstrated the safety of medical instrumentation within the upper airways in 1828.
- Joseph O'Dwyer, who helped in develop of laryngotracheal intubation in 1885.
- Howard Andersen, who introduced bronchoscopic lung biopsy in patients with diffuse lung disease at the Mayo Clinic in 1965 (Andersen et al., 1965).

4