

Treatment of Domestic Wastewater using modified Septic Tank

A Thesis Presented **To**

Chemistry Department- Faculty of Science Ain shams University

Submitted by

Basem Mikhaeil Fawzy Haroun

Water Pollution Research Department National Research Centre B.Sc. Chemistry, 2003(Very Good) Faculty of Science - Minia University

Supervised by

Prof. Dr. Mohamed Mahmoud Abo-Aly

Prof. of Inorganic Chemistry, Faculty of science Ain shams University

Prof. Dr. Fayza Aly Nasr

Prof. of water pollution research, Water Pollution Research Department - NRC

For

The Degree of Master in Science 2011

APPROVAL SHEET FOR SUBMISSION

Title of (M.Sc) thesis: Treatment of Domestic Wastewater using modified Septic Tank

By

Basem Mikhaeil Fawzy Haroun

This thesis has been approved for submission by the supervisors:

Thesis advisors

Approved

1. Prof. Dr. Mohamed Mahmoud Abo-Aly

Prof. of Inorganic Chemistry

Faculty of science

Ain shams University

2. Prof. Dr. Fayza Ali Nasr

Prof. of Water Pollution Research

Water Pollution Research Department

National Research Center

Head of Chemistry Department

Prof. Dr. Maged Shafik Antonious Nakhla

جامعة عين شمس كلية العلــــوم قسم الكيميـــاء

معالجة مياه الصرف الصحى باستخدام خزان تحليل معدل

رسالة مقدمة من

باسم میخائیل فوزی هارون

مساعد باحث بقسم بحوث تلوث المياه - المركز القومي للبحوث بكالوريوس العلوم٢٠٠٣ (جيد جدا) جامعة المنيا – قسم الكيمياء

الي

قسم الكيمياء- كلية العلوم- جامعة عين شمس للحصول علي درجة الماجستير في العلوم / الكيمياء

تحت اشــــراف

ا.د. محمد محمود محمد ابو علي نصر

استاذ الكيمياء الغير العضوية قسم الكيمياء- كلية العلوم جامعة عين شمس المركز القومي للبحوث

 $(Y \cdot 11)$

جامعة عين شمس كلية العلوم

رسالة/ ماجستير اسم الطالب / باسم ميخائيل فوزي هارون عنوان الرسالة / معالجة مياه الصرف الصحي باستخدام خزان تحليل معدل

الدرجة/الماجستير

لجة الاشراف

1- ا.د/ محمد محمود محمد ابو علي الوظيفة :استاذ الكيمياء الغير العضوية- كلية العلوم - جامعة عين شمس

٢- ١.د/ فايزة على نصر الوظيفة : اسنا

الوظيفة :استاذ بحوث تلوث المياه - قسم بحوث تلوث المياه - المركز القومي للبحوث

العلوم - جامعة الاز هــــر

لجنة التحكيم:

1 ـ ا.د/علي مصطفي علي حسن الوظيفة :استاذ الكيمياء الغير العضوية ـ كلية

٢- ١.د/سمير مصطفى المدنى الوظيفة : :استاذ الكيمياء الغير العضوية- كلية

٢- ١.د/سمير مصطفي المدىي
 العلوم جامعة الفيسسوم

تاريخ البحث الدراسات العليا

ختم الاجازة: الرسالة بتاريخ:

موافقة مجلس الكلية موافقة مجلس الجامعة

جامعة عين شمس كلية العلــــوم قسم الكيميـــاء

عنوان الرسالة / معالجة مياه الصرف الصحي باستخدام خزان تحليل معدل

اسم الطالب / باسم ميخائيل فوزي هارون

الدرجة العلميه /الماجستير

القسم التابع له/ قسم الكيمياء

اسم الكليه/ كلية العلوم

الجامعة/ عين شمس

سنة التخرج/ ٢٠٠٣

سنة المنح/ ٢٠١١

جامعة عين شمس كلية العلوم

شكر

اشكر السادة الاساتذة الذين قاموا بالاشراف علي الرسالة وهم:

١ - ١ ـ ١ محمد محمود محمد ابو على

٢ ـ ا. د/ فايزة على نصر

كما اتقدم بخالص الشكر لكل اعضاء هيئة التدريس بكلية العلوم جامعة عين شمس وايضا اعضاء هيئه البحوث وكل العاملين بقسم بحوث تلوث المياه ـ المركز القومي للبحوث لتعاونهم ومساندتهم لي في اجراء هذه الرسالة

Abstract

Name of candidate: Basem Mikhaeil Fawzy Haroun

Degree: (**M.Sc**), Chemistry Department, Faculty of science, Ain Shams University (2011).

Title of the thesis: Treatment of domestic wastewater using modified septic tank.

The treatment of domestic wastewater using a conventional, single baffle, two baffles and packed type septic tanks were the main theme of the present study. The septic tanks were fed continuously with domestic wastewater at three hydraulic retention times (HRTs) ranging from 24h to 72h and corresponding to organic loading rates ranging from 0.32 to 0.88 kg COD/m3/day. The average characteristics of raw domestic sewage investigated in this study in terms of COD, BOD, TSS were 962, 450, 296 mg/l. This raw wastewater can be categorized of high strength as per world-recognized classification.

The treated domestic wastewater quality produced by the four types septic tanks in terms of physico-chemical and biological characteristics proved to be satisfactory. Comparison wise, better results were obtained using the packed type septic tank for primary treatment. Further processing by a post treatment system, however, has to be applied to meet environmental standards. The average removal of pollutants for each type of septic tank in terms of COD, BOD and TSS improves in direct proportion to HRT.

The maximum removal of nitrogen and phosphorous; 34% and 36%, respectively are small values due to the anaerobic digestion which takes place in the septic tank. The fecal coliform removal values were observed to

be affected by type of the septic tank and the HRT, however the highest

percentage removal reached only one log.

At each HRT it was observed that the type of the tank affects the percentage

removal of the pollutants such that the packed type returns best results and

the conventional type is the least.

Operating the four types septic tanks at HRT of 24h and 48h, each type gave

close results at the two HRT, an indication of feasible selection of the 24h

HRT for optimum performance /operation based on economic advantage.

The accumulated sludge volume and weight depend on the septic tank type

and HRT. The average percentage of sludge volatile organic matters is

almost equal. The due time for desludging is directly proportional to the

HRT. At each HRT the due time for desludging tank is in the order of

conventional > single baffle > packed type > two baffles septic tank

Based on achieved results, either the two baffles or the packed septic tank is

considered a viable solution for the on-site decentralized treatment of high

strength domestic wastewater especially at rural communities.

Keywords: domestic, wastewater, treatment, conventional, baffled, packed,

septic, desludging.

Supervisors:

Prof. Dr. Mohamed Mahmoud Abo-Aly

Prof. Dr. Fayza Ali Nasr

CONTENTS

	Page
CHAPTER (1): LITERATURE REVIEW	
1. INTRODUCTION	1
1.1 Background	
1.2 Water supply and sanitation in Egypt	
1.3Wastewater treatment plants in Egypt	4
1.4 Wastewater treatment approaches	7
1.4.1 Centralized vs. decentralized wastewater treatment	8
1.5 Septic tanks	11
1.5.1 History of septic tank	14
1.5.2 Conventional septic tank	16
1.5.3 Baffled septic tank	17
1.5.4 Packed septic tank	22
1.5.5 Septic tank Volume	24
1.5.6. Septic tank Geometry	25
1.5.7. Septic tank pumping	25
1.5.8 Septic Tank Maintenance	27
1.5.9 Safe Use of Septic System	28
1.5.10 Septic tank treatment mechanism	28
1.5.11 Factors affecting the treatment efficiency	30
1.5.11.1 Impact of temperature on treatment process	30
1.5.11.2 Impact of hydraulic retention time (HRT) on treatment efficiency	31
1.5.11.3 Impact of number of chambers / baffles on treatment efficiency	32
1.6 Objective of the thesis	32
CHAPTER (2): MATERIALS AND METHODS	
2.1 septic tanks	34
2.1.1 Conventional septic tank	34

2.1.2 Single baffle septic tank	34	
2.1.3 Two baffles septic tank	35	
2.1.4 Two baffles septic tank with packing material	35	
2.2 sampling and analytical methods		
2.2.1. Calculation of flow rate (Q) and hydraulic retention time (HRT)	37	
2.2.2. Calculation of organic loading rate (OLR)	37	
2.2.3. Calculation of hydraulic loading rate(HLR)	37	
CHAPTER (3): RESULTS AND DISCUSSION		
3.1. Raw Wastewater Characteristics	40	
3.2. Performance of the conventional septic tank	47	
3.2.1 Sludge accumulation in the conventional septic tank	64	
3.3. Performance of the single baffle septic tank	67	
3.3.1 Sludge accumulation in the single baffle septic tank	82	
3.4. Performance of the two baffles septic tank	84	
3.4.1 Sludge accumulation in the two baffles septic tank	99	
3.5. Performance of the packed septic tank	101	
3.5.1 Sludge accumulation in the packed septic tank	117	
3.6 performances of the investigated septic tanks	120	
CHAPTER (4): SUMMARY AND CONCLUSION		
4.1 Introduction	125	
4.2 Objective	127	
4.3 materials and methods	127	
4.4 Raw wastewater characteristics	127	
4.5 performances of the investigated septic tanks	128	
4.6 Conclusion	130	
REFERENCES	132	
ARABIC SUMMARY		

List of abbreviations

%R Percentage Removal

ABR Anaerobic Baffled Reactor

AF Anaerobic filter

AIT Asian Institute of Technology

APHA American Public Health Association

AsiBR Anaerobic single baffled reactor

BAST Baffled anaerobic septic tank

BASTAF Baffled anaerobic septic tank with anaerobic filter

BOD Biochemical Oxygen Demand

°C Celsius

Cm Centimeter

CNES Citizen Network on Essential Services

COD Chemical Oxygen Demand

d Day

EIB European Investment Bank

FC Fecal coliform

g Gram

h Hour

HLR Hydraulic Loading Rate

HRT Hydraulic Retention Time

ICC International Code Council

max Maximum
min Minimum

OLR Organic Loading Rate

SWIS Subsurface wastewater infiltration system

TKN Total Kjeldahl Nitrogen

TP Total Phosphorus

TSS Total Suspended Solids

UASB Up-Flow Anaerobic Sludge Blanket

USEPA United State Environmental Protection Agency

VSS Volatile Suspended Solids

WHO World Health Organization

List of Figures

Figure	Page
Figure (1.1) the ranking of annual incidences of certain diseases due to the lack of sanitation	3
Figure (1.2) Wastewater service developments in Egypt	6
Figure (1.3) Wastewater service coverage in Egypt	7
Figure (1.4) Conventional septic tank	17
Figure (1.5) Single baffle (two compartments) septic tank	18
Figure (1.6) Two baffles (three compartments) septic tank	18
Figure (2.1) Schematic diagram of the Conventional septic tank	38
Figure (2.2) Schematic diagram of Single baffle septic tank	38
Figure (2.3) Schematic diagram of the two baffles septic tank.	39
Figure (2.4) Schematic diagram of the packed septic tank.	39
Figure (3.1) Variation of total COD in raw wastewater	44
Figure (3.2) Variation of total BOD in raw wastewater	44
Figure (3.3) Variation of total suspended solids in raw wastewater	45
Figure (3.4) Variation of total solids in raw wastewater	45
Figure (3.5) Variation of total Kjeldhal nitrogen in raw wastewater	46
Figure (3.6) Variation of ammonia in raw wastewater	46
Figure (3.7) Variation of total phosphorus in raw wastewater	46
Figure (3.8) Variation of total alkalinity in raw wastewater	47
Figure (3.9) Variation of COD in conventional septic tank effluent at 72, 48 and 24 h	49
Figure (3.10) Average COD in raw wastewater and conventional septic tank effluent at 72, 48 and 24	49
Figure (3.11) Variation of BOD in conventional septic tank effluent at 72, 48 and 24 h	52

Figure (3.12) Average BOD in raw wastewater and conventional septic tank effluent at 72, 48 and 24 h	52
Figure (3.13) Variation of TSS in conventional septic tank effluent at 72, 48 and 24 h	54
Figure (3.14) Average TSS in raw wastewater and conventional septic tank effluent at 72, 48 and 24 h	54
Figure (3.15) Average COD, BOD and TSS in conventional septic tank effluent at 72, 48 and 24 h	55
Figure (3.16) Variation of total solids in conventional septic tank effluent at 72, 48 and 24 h	56
Figure (3.17) Average total solids in raw wastewater and conventional septic tank effluent at 72, 48 and 24 h	56
Figure (3.18) Variation of TKN in conventional septic tank effluent at 72, 48 and 24 h	57
Figure (3.19) Average TKN in raw wastewater and conventional septic tank effluent at 72, 48 and 24 h	57
Figure (3.20) Variation of ammonia in conventional septic tank effluent at 72, 48 and 24 h	58
Figure (3.21) Average ammonia in raw wastewater and conventional septic tank effluent at 72, 48 and 24 h	59
Figure (3.22) Average TKN and ammonia in conventional septic tank effluent at 72, 48 and 24 h	59
Figure (3.23) Variation of total phosphorus in conventional septic tank effluent at 72, 48 and 24 h	61
Figure (3.24) Average total phosphorus in raw wastewater and conventional septic tank effluent at 72, 48 and 24 h	61
Figure (3.25) Variation of alkalinity in conventional septic tank effluent at 72, 48 and 24 h	62
Figure (3.26) Average alkalinity in raw wastewater and conventional septic tank effluent at 72, 48 and 24 h	62
Figure (3.27) Variation of Fecal Coliform in conventional septic tank effluent at 72, 48 and 24 h	63
Figure (3.28) Average Fecal Coliform in raw wastewater and conventional septic tank effluent at 72, 48 and 24 h	64
Figure (3.29) Accumulation rate of sludge (cm ³) over time in	65