

Ain Shams University College for Girls, Arts, Science and Education Cairo, Egypt

Effectiveness of Some Novel Surfactants as Corrosion Inhibitors for Carbon Steel in Oil Wells Formation Water

A Thesis Submitted for the Master Degree

In

(Physical Chemistry)

Presented By

Samar Belal Mahmoud Belal Mahmoud

B.Sc. (2006)

To

Chemistry Department
College of Girls for Arts, Science and Education
Ain Shams University

Supervised By

Prof. Dr. Mohamed Attia Migahed

Prof. of Physical Chemistry
Egyptian Petroleum Research Institute (EPRI)

Asst. Prof. Dr. Amira Mesbah

Assistant Prof. of Physical Chemistry College of Girls for Arts, Science and Education Ain Shams University, Egypt

Dr. Amany Hassan Marei

Lecture of Physical Chemistry College of Girls for Arts, Science and Education Ain Shams University, Egypt

(2011)

Ain Shams University College for Girls, Arts, Science and Education Cairo, Egypt

Effectiveness of Some Novel Surfactants as Corrosion Inhibitors for Carbon Steel in Oil Wells Formation Water

Thesis Advisors

Thesis Approved

Dr Mohamed Attia Migahed

Prof. of Physical Chemistry

Dr. Amira Amin Mesbah

Assistant Prof. of Physical Chemistry

Dr. Amany Hassan Marei

Lecture of Physical Chemistry

Head of Chemistry Department

Prof. Dr. Essam Abd Elaziz

Approval of Chemistry Department Council / / 2011

Approval of Faculty Council

Approval of University Council

/ / 2011 / / 2011

Qualifications

Name: Samar Belal Mahmoud Belal Mahmoud:

Scientific Degree: B.Sc.

Department: Chemistry

College: College of Girls for Arts, Science and

Education

University: Ain Shams University

B.Sc. Graduation Year: 2006

NOTE

The candidate has attended courses for one year, covering the following topics:

- Spectroscopy.
- Surface Chemistry
- Electro Chemistry
- Polymer Chemistry
- Nuclear Chemistry
- Advanced Chemical Reactions
- Photochemistry
- Kinetics and Catalysis
- Quantum Chemistry
- Thermodynamics.
- Instrumental analysis.

She has successfully passed a written examination in these courses, in partial fulfillment for the master degree of science.

جامعه عين شمس كلية البنات للاداب والعلوم والتربية قسم الكيمياء

فاعلية بعض المركبات ذات النشاط السطحي المبتكرة كمثبطات لتأكل الصلب الكربونى في مياة تكوينات أبار البترول

رسالة مقدمة للحصول على درجة الماجستير في العلوم (الكيمياء الفيزيائية)

من

سمر بلال محمود بلال

بكالوريوس علوم- كيمياء (٢٠٠٦)

الي

قسم الكيمياء كلية البنات للاداب و العلوم والتربية

جامعة عين شمس

تحت اشراف

أستاذ الكيمياءالفيزيائية معهد بحوث البترول أ.د/ محمد عطية مجاهد

أستاذ مساعد الكيمياء الفيزيائية كلية البنات جامعة عين شمس

أ.م.د/ اميرة امين مصباح

مدرس الكيمياءالفيزيائية كلية البنات جامعة عين شمس

د/ امانی حسن مرعی

(11.1)

جامعه عين شمس كلية البنات للاداب والعلوم والتربية قسم الكيمياء

رسالة ماجستير (كيمياء فيزيائية)

اسم الطالبة: سمر بلال محمود بلال

عنوان الرسالة: فاعلية بعض المركبات ذات النشاط السطحي المبتكرة كمثبطات لتأكل الصلب الكربوني في مياة تكوينات أبار البترول

اسم الدرجة: ماجستير علوم (كيمياء)

لجنة الاشراف:

أستاذ الكيمياءالفيزيائية أستاذ الكيمياءالفيزيائية معهد بحوث البترول

أ.م.د/ اميرة امين مصباح كلية البنات جامعة عين شمس

د/ اماتي حسن مرعي مدرس الكيمياءالفيزيائية كلية البنات جامعة عين شمس

تاريخ موافقة مجلس القسم / ۲۰۱۱ م

الدراسات العليا

ختم الاجازة: الرسالة بتاريخ

/ /۲۰۱۱م

موافقة مجلس الكلية موافقة مجلس الكلية

۱ ۱۱۱۰۲م

جامعه عين شمس كلية البنات للاداب والعلوم والتربية قسم الكيمياء

اسم الطالبة: سمر بلال محمود بلال

الدرجة العلمية: بكالوريوس علوم (كيمياء)

القسم التابع له: الكيمياء

اسم الكلية: كلية البنات للاداب والعلوم والتربية

الجامعة : جامعة عين شمس

سنه التخرج :۲۰۰٦

سنه المنح: ۲۰۱۱

CONTENTS

CHAPTER 1

Introduction

1.1- General Aspects of Corrosion	1
1 .2- Basic requirements of corrosion process	2
1.3- Cost of Corrosion	4
1.4- Classification of Corrosion	4
1.5.1- Forms of Corrosion	5
1.5. 1- General corrosion or uniform attack	5
1.5. 2-Pitting or localized attack	5
1.5. 3-Galvanic corrosion	5
1.5. 4-Crevice corrosion	5
1.5. 5-Stress corrosion cracking (SCC).	6
1.5. 6-Erosion – corrosion	8
1.5. 7-Fretting corrosion	8
1.5. 8-Filiform corrosion	8
1.5. 9-Microbiologically Influenced Corrosion (MIC)	9
1.6 - Electrochemical Theory of Corrosion	10
1.7- Corrosion Problems in Oil Field	11
1.8- Corrosion Inhibitors	12
1.8.1- Classification of Inhibitors	12

1.8.1.1- Environmental Conditioners (Scavengrs)	12
1.8.1.2- Interface Inhibitors.	13
1.8.1.2.1- Liquid-Phase Inhibitors	13
1.8.1.2.1.1- Anodic Inhibitors.	14
1.8.1.2.1.1.2- Cathodic Inhibitors	14
1.8.1.2.1.1.3- Mixed Inhibitors	15
1.8.1.2.2- Vapor-Phase Inhibitors	18
1. 8.2- Mechanistic Aspects of Corrosion Inhibition	18
1. 8.2.1- Environmental Conditioners (Scavengers)	18
1. 8.2.2- Anodic Inhibitors (Passivators)	18
1. 8.2.3- Cathodic Inhibitors	19
1.8.2.4- Mixed Inhibitors (Adsorption)	20
1.8.2.5- Vapor- Phase Inhibitor(VIP)	23
1.8- Mechanism of inhibition	24
1.9.1- Formation of a physical barrier and reduction	
in metal reactivity	24
1.8.2- Change in the electrical double layer structure	25
1.9- Theories of Corrosion Inhibition	25
1.10.1- Adsorption theory.	25
(i)- π -Orbital adsorption	26
(ii)- Van der Waals adsorption	26
(iii)- Film theory	26
1.11.1- Surfactants as Corrosion Inhibitor	26
1.11.2.1-Classification of Surfactants as Corrosion Inhibitor	27

1.11.2.1.1 Ionic Surfactants as Corrosion Inhibitor	27
A- Anionic Surfactants Corrosion Inhibitor	27
A.1- Carboxylic Acids and Salts	28
A.1.1- Carboxylic Acids	28
A.1.2- Ester Carboxylic Acids	29
A.1.3- Ether Carboxylic Acids	30
A. 2- Sulfuric Acid Derivatives	30
A.2.1- Alkyl Sulfates	30
A.2.2- Alkyl Ether Sulfates	31
A.2.3- Sulfonic Acids and Salts	32
A.2.4- Phosphoric Acid Esters and Salts	34
A.2.5- Acylamino Acids and Salts.	35
B- Cationic Surfactants as Corrosion Inhibitor	36
B.1- Alkyl Amines	36
B.2- Alkylimidazolines	38
B.3- Quaternary Ammonium Salts	39
B.4- Ethoxylated Alkyl Amines	40
B.5- Esterified Quaternaries	40
B.6- Amphoteric Surfactants	40
1.11.2.2- Nonionic Surfactants	41
1.11.2.2.1- Alcohols	41
1.11.2.2.2- Ethers	42
1.11.2.2.3- Alkanolamides	43
1.11.2.2.4- Esters	43

1.11.2.2.5- Amine Oxides	44	
1-12-LiteratureSurvey	45	
CHAPTER II		
Experimental		
2.1- Chemicals Used	73	
2.1- Synthesis of Surfactants	73	
2.2.a-Preparation of inhibitor I	75	
2.2.b-Preparation of inhibitor II	75	
2.2.c-Preparation of inhibitor III	76	
2.2.d-Preparation of inhibitor IV	76	
2.3- Chemical Composition of the Investigated Materials	77	
2.4- Formation water	77	
2.5- Evaluation of Some Surface Properties of the Prepared Surfactant78		
2.5. 1- Surface Tension Measurements ($^{\gamma}$)	78	
2.5. 2- Critical Micelle Concentration (CMC)	78	
2.6- Test Specimens and Treatment.	79	
2.6.1- For Weight loss Measurements	79	
2. 6.2- For Electrochemical Measurements	79	
2.7- Procedures Used for Corrosion Measurements	80	
2.7.1- Weight Loss Measurements	80	
2.7.2. Electrochemical measurements	81	
2.7.2.1- Open circuit potential	82	

2.7.2.2- Potentiodynamic Polarization Measurements	82
2.7.2.3- Electrochemical impedance (EIS)	82
2.8- Scanning Electron Microscopy (SEM)	83
2.9- Energy Dispersive Analysis of X-Rays (EDX)	83
CHAPTER III	
Results & Discussion	
3. 1- Weight Loss Measurements	86
3.1.1- Effect of Inhibitor Concentration	86
3.1.2- Adsorption isotherm	95
3.2- Electrochemical Measurements	99
3.2.1- Open circuit potential measurements (OCP)	99
3. 2.2- Potentiodynamic Polarization Measurements	103
3.2.3- Electrochemical Impedance Spectroscopy	
Measurements (EIS)	111
3.3- Surface analysis	121
3.4.1- Scanning Electron Microscopy (SEM)	121
3.4.2- Energy Dispersive Analysis of X-Rays (EDX)	124
3.4- Relation between the surface properties of the invest	igated
surfactant and their corrosion inhibition efficiency	127
References	

Arabic summary

SUMMARY

Pipelines play an extremely important role through the world as a means of transporting gases and liquids over long distances from their sources to ultimate consumers. So that corrosion problems exist in the oil industry at every stage of production from initial extraction to refining and storage prior to use requiring the application of corrosion inhibitors. It has been reported that corrosively is related to the nature of formation water accompanying the oil production process. One of the most economic methods is the application of corrosion inhibitors. The surfactant inhibitors have many advantages such as high inhibition efficiency, low price, low toxicity and easy production. The activity of these surfactants very much depends on their types, compositions and concentrations; in addition to the environmental factors, such as (temperature, pressure, solvents and additives). So, this work aims to synthesis of a new family of nonionic surfactants based on tolyltriazole and evaluation their inhibition efficiency on the carbon steel corrosion in oil wells formation water. This work includes three main parts:

THE FIRST PART:

Synthesis of Compounds Used

Condensation reactions of tolyltriazole with citric acid were carried out. To the formed product poly ethylene glycol (PEG) with different molecular weight (Mol.Wt. 400, 3000, 4000 and 6000) were added to give four nonionic surfactants (I-IV). The purity of the products was checked by FTIR and elemental analysis.

SUMMARY

THE SECOND PART:

Study the Surface Activity of the Synthesized Surfactants

Surface activity was studied for the synthesized nonionic surfactants by setting some properties such as surface tension (γ) , critical micelle concentration (CMC), maximum surface excess concentration (Γ_{max}) and minimum surface area per molecule (A_{min}) .

THE THIRD PART:

Evaluation of the Prepared Surfactants as Corrosion Inhibitors Using Different Techniques

1. Weight Loss Studies

The weight losses of carbon steel in formation water (in mg cm⁻²) with and without the addition of surfactant inhibitors were determined at different immersion times. It was found that the inhibition efficiency of all these compounds increases with increasing its concentration. The maximum inhibition efficiency for each compound was achieved at 450 ppm and further increase in concentration did not cause any appreciable change in the performance of the inhibitors. The percentage inhibition efficiency was found to be in the following order:

The data obtained from weight loss technique have been tested with several adsorption isotherms. Langmuir adsorption isotherm was found to fit well with our experimental data.

2. Different Electrochemical Measurements

A. Open Circuit Potential Measurements (OCP)

The variation of the OCP of the carbon steel electrode as a function of the period of exposure in the absence and presence of