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Mixed model two-sided assembly lines are common industrial practice in 

the assembly of large-sized products such as buses and trucks. In a Mixed 

model two-sided assembly line, different assembly tasks are carried out 

on the same product in parallel at both left and right sides of the line. 

The decision problem of optimally balancing the assembly work among 

the stations with respect to some objective is known as the assembly line 

balancing problem (ALBP). In this research a Genetic Algorithm is devel- 

oped to solve the Single-model and Mixed-model Two-sided Assembly 

Line Balancing Problem with the objective of finding the minimum num- 

ber of stations as well as the minimum number of mated-stations for a 

given cycle time. 
 

 
 

The developed heuristic algorithm specifies a new method for gener- 

ating the initial population.  It applies a hybrid crossover and a modified 

scramble mutation operators. Moreover, due to the nature of the two-sided 

assembly line balancing problem, a proposed station oriented procedure is 

adopted for assigning tasks to stations.  This procedure specifies the side 

of the tasks that have no preferred direction based on specific rules rather 

than assigning these tasks randomly. 
 

 
 

A computational study is presented to test the performance of heuris- 

tic algorithm and the side assignment rules.  The results showed that the 

proposed side assignment rules are effective especially in large problems. 

The proposed method of generating the initial population is able to gen- 

erate feasible solution allowing more diversity in the population. The hy- 



 

 

 

 

brid crossover and the modified scramble mutation are able to preserve the 

feasibility of all solutions throughout all the developed generations.  The 

Genetic Algorithm is able to find the optimum or near optimum solutions 

within a limited number of iterations. 
 

 
 

keywords: Two-sided Mixed-model Assembly Line Genetic Algorithm 
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Assembly lines have been widely used in various production systems to 

produce high volume standardized products. An assembly line includes a 

series of stations arranged along a material handling system.  The prod- 

ucts are consecutively launched down the line and are moved from station 

to station.  At each station, certain operations are repeatedly performed 

regarding the cycle time.  The decision problem of optimally balancing 

the assembly work among the stations with respect to some objective is 

known as the assembly line balancing problem (ALBP). Due to the high 

level of automation, assembly systems are associated with considerable 

investment costs.  Therefore, the configuration of an assembly line is of 

critical importance for implementing a cost efficient production system. 

Configuration planning generally comprises all tasks and decisions which 

are related to equipping and aligning the productive units for a given pro- 

duction process, before the actual assembly can start. This includes setting 

the system capacity like the cycle time, the number of stations and the sta- 

tion equipment as well as assigning the tasks to the stations. 

A relatively new type of assembly lines is the Mixed-model Two-sided 

assembly lines. These lines are usually designed to produce high-volume 

large-sized standardized products, such as automobiles, trucks and buses. 

These products come in different models and building an assembly line for 

each model is extremely expensive. Moreover, a two-sided assembly line 

in practice can provide some advantages over a one-sided assembly line. 

They provide shorter line length, reduced throughput time, lower cost of 

tools and fixtures, and less material handling.  The ALBP is known to be 

one of the hard optimization problems as it is proven to be NP-Hard prob- 

lem. Efforts were diverted to heuristic techniques and algorithms, opting 



 

 

x  Summary 
 

 

to reach near optimal solutions that can be easily applied. 
 

The aim of this research is to develop a Heuristic Algorithm that is able to 

solving the Mixed-model Two-sided Assembly Line Balancing Problem 

(TALBP) with the objective of finding the minimum number of stations 

as well as the minimum number of mated-stations for a given cycle time. 

In this research a Genetic Algorithm approach (GA) is presented to solve 

this balancing problem.  The developed algorithm applies a new proce- 

dure for generating the initial population and a hybrid crossover and mod- 

ified scramble mutation operators to effectively search within the solution 

space. Moreover, due to the TALBP nature a station oriented procedure is 

formulated for assigning tasks to mated-stations. This procedure specifies 

new rules that deals with the either tasks rather than assigning these tasks 

randomly. 

In order to run this model, graphical user interface software was devel- 

oped that enables the user to solve different types of assembly line bal- 

ancing problems and tailor define all GA parameters which opens a great 

room of opportunities of further research on the impact of different pa- 

rameters. The effectiveness of the proposed GA operators was evaluated. 

The proposed method of generating the initial population was tested and 

a new measure to evaluate the population diversity was introduced.  The 

proposed method was able to generate feasible solutions in different areas 

of the search space having a more diverse population that yields to bet- 

ter results at the end.  Also the applied selection procedure for selecting 

parents was compared with other procedures used before and it proved its 

effectiveness in obtaining better solutions. The proposed hybrid crossover 

operator was tested and proved that it obtains better results than the two- 

points crossover and precedence preservative crossover when used alone. 

Also the side assignment rules were proved to be efficient especially in 

large scale problems. 

The developed GA was tested on the available benchmark problems for 

the Single-model Two-sided Assembly Line Balancing Problems as well 
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as the Mixed-model Two-sided Assembly Line Balancing Problems.  For 

the TALBP the developed GA obtained the best solution for more than 

90% of the test problems.  As for the Mixed-model TALBP, the GA ob- 

tained the best solution for all of the test problems.  The results showed 

that the developed GA was able to find optimum or near optimum solu- 

tions within a limited number of iterations.  Finally, a real life case study 

was implemented to test the applicability of developed algorithm in real 

life. The results shows that applying the Mixed-model two-sided assembly 

lines with the right balance will increase the efficiency of the manufactur- 

ing system. Also it will reduce the cost of handling systems and equipment 

and reduce the labor cost. 
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i, j, h, k tasks number 1,2,3.....N 
 

n  number of tasks 
 

m model number 1,2,3,........M 
 

M number of models being processed on the line 
 

R Right-side 
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Dm Demand for model m 

H  Planning horizon 
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P Precedence Matrix P = 
 
Pi, j 

 
 

where, Pi, j 

  
1 

if j is a predecessor of i 
otherwise 

th  processing time for task(h) 

CT Cycle time 
 

F Thm Task finishing time of task h for model m 

F Th Maximum task finishing time of task h 

T F TL,NM Total finishing time for the left-side of the current mated-station 

T F TR,NM Total finishing time for the right-side of the current mated-station 

m 
L,NM Total processing time for tasks requiring the left-side of the cur- 

rent mated-station for model m 


