

Ain Shams University Faculty of Engineering Design & Production Engineering Department

MIXED MODEL ASSEMBLY LINE BALANCING

Submitted in Partial Fulfillment of the Requirements of M.Sc. in Mechanical Engineering

Presented By:
Raghda Bahaa El-Din Taha Mohamed

Supervised By:
Prof. Dr. Amin M. K. El-Kharbotly
Assoc. Prof. Nahid H. Afia
Dr. Yomna M. Sadek

كلية الهندسة قسم التصميم و هندسة الإنتاج

إتزان خط التجميع للنموذج المختلط

رسالة مقدمة من المهندسة/ رغده بهاء الدين طه محمد

للحصول على درجة الماجستير في الهندسة الميكانيكية

تحت إشراف أ.د. أمين محمد كامل الخربوطلى د. ناهد حسين عافية د. يمني محمد صادق

Acknowledgment

I would like to gratefully thank Prof. Amin El-Kharbotly for his guidance, patience, understanding and constant support throughout the work. His high expectations thrived me to do my best. He taught me how to be a true researcher. It was my pleasure to learn from his great experience and knowledge.

I would also like to thank the supervision team, Dr. Nahid Afia and Dr. Yomna Sadek for all their help and patience. Their guidance and ideas helped me through all the work. Their friendship, support, and solid faith in me was my comfort when the going got tough. You have been a true family to me.

I am also grateful to all who helped me through this work especially Eng. Ahmed Saif, Eng. Mohammad Saleh, Eng. Tamer Ismail, Eng. Ahmed Samy and Eng. Nessrine Zamzam. Special thanks to all my friends and colleagues in the German University in Cairo without their support I would have never completed this work.

Finally, and most importantly, I would like to thank my mother and family for their patience, their endless support, and their continuous prayers for me. Their deepest faith and believe is what got me there. Thank you words are really not enough to express my gratitude.

Abstract

Mixed model two-sided assembly lines are common industrial practice in the assembly of large-sized products such as buses and trucks. In a Mixed model two-sided assembly line, different assembly tasks are carried out on the same product in parallel at both left and right sides of the line. The decision problem of optimally balancing the assembly work among the stations with respect to some objective is known as the assembly line balancing problem (ALBP). In this research a Genetic Algorithm is developed to solve the Single-model and Mixed-model Two-sided Assembly Line Balancing Problem with the objective of finding the minimum number of stations as well as the minimum number of mated-stations for a given cycle time.

The developed heuristic algorithm specifies a new method for generating the initial population. It applies a hybrid crossover and a modified scramble mutation operators. Moreover, due to the nature of the two-sided assembly line balancing problem, a proposed station oriented procedure is adopted for assigning tasks to stations. This procedure specifies the side of the tasks that have no preferred direction based on specific rules rather than assigning these tasks randomly.

A computational study is presented to test the performance of heuristic algorithm and the side assignment rules. The results showed that the proposed side assignment rules are effective especially in large problems. The proposed method of generating the initial population is able to generate feasible solution allowing more diversity in the population. The hy-

brid crossover and the modified scramble mutation are able to preserve the feasibility of all solutions throughout all the developed generations. The Genetic Algorithm is able to find the optimum or near optimum solutions within a limited number of iterations.

keywords: Two-sided Mixed-model Assembly Line Genetic Algorithm

Summary

Assembly lines have been widely used in various production systems to produce high volume standardized products. An assembly line includes a series of stations arranged along a material handling system. The products are consecutively launched down the line and are moved from station to station. At each station, certain operations are repeatedly performed regarding the cycle time. The decision problem of optimally balancing the assembly work among the stations with respect to some objective is known as the assembly line balancing problem (ALBP). Due to the high level of automation, assembly systems are associated with considerable investment costs. Therefore, the configuration of an assembly line is of critical importance for implementing a cost efficient production system. Configuration planning generally comprises all tasks and decisions which are related to equipping and aligning the productive units for a given production process, before the actual assembly can start. This includes setting the system capacity like the cycle time, the number of stations and the station equipment as well as assigning the tasks to the stations.

A relatively new type of assembly lines is the Mixed-model Two-sided assembly lines. These lines are usually designed to produce high-volume large-sized standardized products, such as automobiles, trucks and buses. These products come in different models and building an assembly line for each model is extremely expensive. Moreover, a two-sided assembly line in practice can provide some advantages over a one-sided assembly line. They provide shorter line length, reduced throughput time, lower cost of tools and fixtures, and less material handling. The ALBP is known to be one of the hard optimization problems as it is proven to be NP-Hard problem. Efforts were diverted to heuristic techniques and algorithms, opting

x Summary

to reach near optimal solutions that can be easily applied.

The aim of this research is to develop a Heuristic Algorithm that is able to solving the Mixed-model Two-sided Assembly Line Balancing Problem (TALBP) with the objective of finding the minimum number of stations as well as the minimum number of mated-stations for a given cycle time. In this research a Genetic Algorithm approach (GA) is presented to solve this balancing problem. The developed algorithm applies a new procedure for generating the initial population and a hybrid crossover and modified scramble mutation operators to effectively search within the solution space. Moreover, due to the TALBP nature a station oriented procedure is formulated for assigning tasks to mated-stations. This procedure specifies new rules that deals with the either tasks rather than assigning these tasks randomly.

In order to run this model, graphical user interface software was developed that enables the user to solve different types of assembly line balancing problems and tailor define all GA parameters which opens a great room of opportunities of further research on the impact of different parameters. The effectiveness of the proposed GA operators was evaluated. The proposed method of generating the initial population was tested and a new measure to evaluate the population diversity was introduced. The proposed method was able to generate feasible solutions in different areas of the search space having a more diverse population that yields to better results at the end. Also the applied selection procedure for selecting parents was compared with other procedures used before and it proved its effectiveness in obtaining better solutions. The proposed hybrid crossover operator was tested and proved that it obtains better results than the twopoints crossover and precedence preservative crossover when used alone. Also the side assignment rules were proved to be efficient especially in large scale problems.

The developed GA was tested on the available benchmark problems for the Single-model Two-sided Assembly Line Balancing Problems as well as the Mixed-model Two-sided Assembly Line Balancing Problems. For the TALBP the developed GA obtained the best solution for more than 90% of the test problems. As for the Mixed-model TALBP, the GA obtained the best solution for all of the test problems. The results showed that the developed GA was able to find optimum or near optimum solutions within a limited number of iterations. Finally, a real life case study was implemented to test the applicability of developed algorithm in real life. The results shows that applying the Mixed-model two-sided assembly lines with the right balance will increase the efficiency of the manufacturing system. Also it will reduce the cost of handling systems and equipment and reduce the labor cost.

List of Tables

4.1	Example on a MTALBP
5.1	MTALBP numerical example
5.2	Parameters used in the developed GA
5.3	STALBP results
5.4	MTALBP results
5.5	Case study input data
5.6	The workstation for Model A
5.7	The workstation for Model B
5.8	Workstation assignment
A.1	Input data of the P9 instance
A.2	Input data of the P12 instance
A.3	Input data of the P16 instance
A.4	Input data of the P24 instance
A.5	Input data of the P65 instance
A.6	Input data of the P148 instance
A.7	Input data of the P205 instance
B.1	Input data of the task times P9 instance
B.2	Input data of the task times P12 instance
B.3	Input data of the task times P16 instance
B.4	Input data of the task times P24 instance
B.5	Input data of the task times P65 instance
B.6	Input data of the task times P148 instance 176

List of Figures

2.1	Assembly line balancing classification	6
2.2	Assembly lines for single and multiple products[4]	9
2.3	Straight-line and U-shaped assembly line [32]	11
2.4	A Schematic presentation of the two-sided assembly line	12
2.5	The Working Principle of a Simple Genetic Algorithm	21
2.6	Example of binary encoding	22
2.7	Example of value encoding	22
2.8	Example of permutation encoding	23
2.9	Example of tree encoding	23
2.10	The chromosome representation used in ALBP [71]	25
2.11	The research presented in ALBP	30
4.1	Example on constructing a combined precedence diagram .	42
4.2	Example of a right station balanced using maximum task	
	time	44
4.3	Example of a right station balanced using average task time	45
4.4	Example of a right station balanced using task time of each	
	model separately	46
4.5	An example of chromosome representation for 9 task prob-	
	lem	48
4.6	Flow chart of the developed algorithm	49
4.7	Example for forward assignment method	53
4.8	Example on backward method	56
4.9	Example on combined method	57
4 10	Two Points crossover	59

4.11	Precedence Preservative crossover	60
4.12	Example of the modified scramble mutation	62
4.13	Side assignment cases	70
4.14	A snapshot of the GUI before entering the data	72
4.15	The results of P12 after solving the problem with the GUI.	74
4.16	The best and the mean fitness value plotted against the gen-	
	eration	75
5.1	The best and the mean fitness value plotted against the gen-	
	eration for the P148 using random side assignment	78
5.2	The best and the mean fitness value plotted against the gen-	
	eration for the P148 using side assignment rules	79
5.3	Example on a population with zero similarity between the	
	chromosomes	80
5.4	Example on calculating the similarity between the chro-	
	mosomes	81
5.5	Example on calculating the average similarity between the	
	chromosomes	82
5.6	Relationship between the average similarity percentage of	
	the chromosomes of the initial population and the order of	
	strength for both forward and forward-backward methods	0.2
	in small size problem (P24)	83
5.7	Relationship between the average similarity percentage of	
	the chromosomes of the initial population and the order of	
	strength for both forward and forward-backward methods in large size problem (P148)	84
5.8	Relationship between the average similarity percentage of	07
٥.٥	the chromosomes of the initial population and the order of	
	strength for both forward and forward-backward methods	
	in problems (P24) and (P148)	84

5.9	Average similarity percentage against the number of gen-	
	erations for P24	88
5.10	Average similarity percentage against the number of gen-	
	erations for P148	89
5.12	The best and the mean fitness value plotted against the gen-	
	eration for the forward-backward method	89
5.11	The best and the mean fitness value plotted against the gen-	
	eration for the forward method	90
5.13	A bar chart of the fitness value for the individuals in the	
	population using tournament selection. (a) 20 th generation	
	(b) 100 th generation	91
5.14	A bar chart of the fitness value for the individuals in the	
	population using roulette wheel selection. (a) 20 th genera-	
	tion (b) 100 th generation	91
5.15	A bar chart of the fitness value for the individuals in the	
	population using remainder selection. (a) 20 th generation	
	(b) 100 th generation	92
5.16	The best and the mean fitness value plotted against the gen-	
	eration for two-points crossover	94
5.17	The best and the mean fitness value plotted against the gen-	
	eration for precedence preservative crossover	94
5.18	The best and the mean fitness value plotted against the gen-	
	eration for hybrid crossover	95
5.19	Mean fitness value plotted against different crossover rates .	96
5.20	Precedence diagram for the 24-task example problem	97
5.21	The solution procedure for the numerical example of the	
	two-sided assembly line balancing problem	99
5.22	The final line balance of the numerical example of the two-	
	sided assembly line balancing problem	100
5.23	Chromosome representation of the numerical example	100
5.24	The solution of the problem (P12)	103

5.25	The number of stations and the number of mated-stations plotted against the cycle time for P9 using the Developed
	GA
5.26	The number of stations and the number of mated-stations plotted against the cycle time for P12 using the Developed GA
5.27	The number of stations and the number of mated-stations plotted against the cycle time for P16 using the Developed GA
5.28	The number of stations and the number of mated-stations plotted against the cycle time for P24 using the Developed GA
5.29	The number of stations and the number of mated-stations plotted against the cycle time for P65 using the Developed GA
5.30	The number of stations and the number of mated-stations plotted against the cycle time for P148 using the Developed GA
5.31	The number of stations and the number of mated-stations plotted against the cycle time for P205 using the Developed GA
5.32	The number of stations plotted against the cycle time for P65112
5.34	The number of stations plotted against the cycle time for P205
5.33	The number of stations plotted against the cycle time for P148
5.35	The number of stations and the number of mated-stations plotted against the cycle time for P9 using the Developed GA
	O11

5.36	The number of stations and the number of mated-stations	
	plotted against the cycle time for P12 using the Developed	
	GA	115
5.37	The number of stations and the number of mated-stations	
	plotted against the cycle time for P16 using the Developed	
	GA	115
5.38	The number of stations and the number of mated-stations	
	plotted against the cycle time for P24 using the Developed	
	$GA\ \dots \dots$	116
5.39	The number of stations and the number of mated-stations	
	plotted against the cycle time for P65 using the Developed	
	GA	116
5.40	The number of stations and the number of mated-stations	
	plotted against the cycle time for P148 using the Devel-	
	oped GA	117
5.41	The number of stations and the number of mated-stations	
	plotted against the cycle time for P148	119
5.42	The electric distribution panel	121
5.43	The electric distribution panel 500kv	122
	The electric distribution panel 1000kv	
5.46	Work stations workload for balancing Model A	129
5.47	Work stations workload for balancing Model B	130
	Work stations workload for balancing Model A and B	
5.45	Combined precedence diagram	136

Notation

```
i, j, h, k
            tasks number 1,2,3....N
            number of tasks
    n
            model number 1,2,3,......M
    m
    M
            number of models being processed on the line
    R
            Right-side
    L
            Left-side
    E
            Either-side
            Demand for model m
   D_{\rm m}
   Η
            Planning horizon
   NM
            Number of Mated-stations
   NR
            Number of Right-side stations
   NL
            Number of Left-side stations
   NS
            Number of Stations
            Lower bound of the number of stations
  LB_{NS}
 LB_{NM}
            Lower bound of the number of mated-stations
            Precedence Matrix P = P_{i,j}
    P
            where, P_{i,j} \begin{array}{ccc} 1 & \text{if j is a predecessor of i} \\ 0 & \text{otherwise} \end{array}
            processing time for task(h)
    t_h
   CT
            Cycle time
  FT_{hm}
            Task finishing time of task h for model m
  FT_h
            Maximum task finishing time of task h
TFT_{L,NM}
            Total finishing time for the left-side of the current mated-station
TFT_{R,NM}
            Total finishing time for the right-side of the current mated-station
TPT_{L,NM}^{m}
             Total processing time for tasks requiring the left-side of the cur-
            rent mated-station for model m
```