Abdominal Compartment Syndrome

Current Management

Essay

Submitted for partial fulfillment of Master Degree in General Surgery

By

Karim El-Said El-Karadawy

M. B. B, Ch.

Suez Canal University

Under Supervision of

Professor. Dr. Abd El-Wahab Mohamed Ezzat

Professor of General Surgery
Faculty of Medicine
Ain Shams University

Dr. Mohamed Mahfouz Mohamed

Lecturer of General Surgery
Faculty of Medicine
Ain Shams University

Faculty of Medicine
Ain Shams University
2011

متلازمة الأعراض المصاحبة لزيادة الضغط داخل البطن

رسالــــة مقدمة توطئة للحصول على درجة الماجستير في الجراحة العامة

> من الطبيب كريم السعيد القرضاوى بكالوريوس الطب والجراحة كلية الطب/ جامعة قناة السويس

تحت أشراف
الأستاذ الدكتور/عبد الوهاب محمد عزت
استاذ الجراحة العامة
كلية الطب/جامعة عين شمس
الدكتور/محمد محفوظ محمد
مدرس الجراحة العامة
كلية الطب/جامعة عين شمس

كلية الطب جامعة عين شمس ٢٠١١

Abdominal compartment syndrome (ACS) is defined as an increased intra-abdominal pressure (IAP > 20 mmHg) in combination with single or multiple organ dysfunction which was not previously present. This condition affects multiple organ systems in graded fashion. Early identification and abdominal decompression are essential in the management and treatment of this difficult situation; otherwise, it leads to multiple organ failure and ultimately, death. Increased intra-peritoneal volume conditions are the of elevated source TAP. Extrinsic common most compression of the abdomen by burn eschars, pneumatic anti-shock garments, tight abdominal closure, massive volume resuscitation for any reason, and inflation of the peritoneum by CO2 in laparoscopic surgery can also lead to increased IAP. (Madigan et al., 2008).

Abdominal compartment syndrome can be divided into the following 3 categories:

- -Primary or acute abdominal compartment syndrome: This occurs when intra-abdominal pathology is directly responsible for the compartment syndrome.
- -Secondary abdominal compartment syndrome: This occurs when no visible intra- abdominal injury is present but injuries outside the abdomen causing fluid accumulation.
- -Chronic abdominal compartment syndrome: This occurs in the presence of cirrhosis and ascitis, often in the later stages of the disease. (Paula, 2009).

Organ dysfunction with abdominal compartment syndrome is a product of the effects of intra-abdominal hypertension (IAH) on multiple organ systems. Abdominal compartment syndrome follows a destructive pathway similar to compartment syndrome of the extremity. Problems begin at the organ level with direct compression; hollow systems such as the intestinal tract and portal-caval system collapse

under high pressure. Immediate effects such as thrombosis or bowel wall edema are followed by translocation of bacterial products leading additional fluid accumulation, further increasing intra-abdominal pressure. At the cellular level, oxygen delivery is impaired leading to ischemia and anaerobic metabolism. Vasoactive substances such as and serotonin increase histamine endothelial permeability, further capillary leakage impairs red cell transport, and ischemia worsens (Madigan et al., 2008).

Compartment syndrome in the abdomen is usually suggested by an increased abdominal girth. If this change is acute, the abdomen is tense and tender. Although this may be difficult to recognize in patients with morbid obesity, other patients often have an abdomen clearly out of proportion to their body habitus. This may be easier to visualize with the patient standing or sitting upright. The secondary

effects of abdominal compartment syndrome include distended abdomen, wheezes, rales, increased respiratory rate, cyanosis and miserable appearance. (Paula, 2009).

The indications for surgical decompression of abdominal compartment syndrome (ACS) are not clearly defined, but undoubtedly, some patients benefit from it. In patients without recent abdominal incisions, it can be achieved with full-thickness laparostomy (either midline, or transverse subcostal) or through a subcutaneous linea alba fasciotomy. In spite of the physiological improvement in variables significant decrease in IAP, however, the effects of surgical decompression on organ function and outcome are less clear. Because of the significant morbidity associated with surgical decompression and management of the ensuing open abdomen, more research is needed to better define the appropriate indications and techniques for surgical intervention (Leppaniemi, 2009).

AIM OF WORK

To highlight the current and most recent trends in management of the Abdominal Compartment Syndrome.

LIST OF CONTENTS

Item	Page No.
List of Contents.	I
List of Figures.	II, III
List of Tables.	IV
List of Abbreviations.	V, VI
Introduction and Aim of Work.	1 4
Chapter (1) Anatomy of the Abdominal	530
Compartments and Spaces.	550
Chapter (2) Pathophysiology of Abdominal	31 71
Compartment Syndrome.	J1 / 1
Chapter (3) Diagnosis of Abdominal	72 89
Compartment Syndrome.	72 03
Chapter (4) Management of Abdominal	90 122
Compartment Syndrome.	30 122
Conclusion.	123 125
References.	126 148
Arabic Summary	

LIST OF FIGURES

No.	Description (Title)	Page No.
1	Subdivision of peritoneal cavity.	7
2	Omental bursa and stomach bed.	9
3	Foramen of winslow.	14
4	The superior and inferior duodenal recesses.	20
5	The paradudenal recess.	22
6	The peritoneal folds and recesses in the caecal	24
	region.	24
7	Effect of abdominal compartment syndrome	48
'	on various organ.	10
8	The cardiovascular effect of intra-abdominal	53
	hypertension.	3
9	Pathophysiology of intra-abdominal	
	hypertension on the cardiovascular,	59
	gastrointestinal and renal system.	
10	Pathophysiology of intra-abdominal	
	hypertension on the respiratory and central	63
	nervous system.	

11	57-year-old man with diabetes who had laparotomy for infective aortitis.	79
12	76-year-old woman after motor vehicle accident.	82
13	20-year-old woman who presented with traumatic placental abruption at 26 weeks' gestation.	83
14	50-year-old man after motor vehicle accident	84
15	54-year-old man who underwent orthotopic liver transplantation.	85
16	67-year-old man who presented with severe acute pancreatitis.	86
17	Decompressive transverse laparotomy.	104
18	Figure after decompressive laparotomy.	104
19	Towel clipping the skin edges.	112
20	Towel clipping the skin edges with evisceration of the bowel.	
21	Laparotomy with bogoto bag.	114
22	Dexon absorbable mesh.	115
23	Close up view of dexon mesh.	115
24	Covering transverse laparostomy with "self-made"negative pressure dressing.	116
25	Vacuum-dressing with temporary mesh being	118

	Changed.	
26	Approximation of the abdominal skin creating ventral hernia.	118
27	Presterilized (gas), 3-L, and cystoscopy irrigation bag	120

LIST OF TABLES

No.	Description (Title)	Page No.
1	Risk factors for the development of IAH	37
	and ACS.	37
2	Consensus definitions regarding IAH and	41
	ACS.	'1 1
3	Consensus recommendations regarding	42
)	IAH and ACS.	44
4	Causes of Abdominal Compartment	74
	Syndrome.	/ -
	Preoperative CT or Sonography Findings	
5	in 21 Patients with Clinically Proven	78
	Abdominal Compartment Syndrome.	
6	Medical treatment options for intra	
	abdominal hypertesion and abdominal	93
	compartment syndrome.	

LIST OF ABBREVIATIONS

ABB.	Meaning
ACS	Abdominal Compartment Syndrome.
APP	Abdominal Perfusion Pressure.
ARDS	Acute Respiratory Distress Syndrome.
СО	Cardiac Output.
СРР	Cerebral Perfusion Pressure.
CSF	Cerebro-Spinal Fluid.
СТ	Computed Tomography.
CVP	Central Venous Pressure.
DL	Decompressive Laparotomy.
FG	Filtration Gradient.
GEDV	Global End-Diastolic Volume.
GFP	Glomerular Filtration Pressure.
IAH	Intra Abdominal Hypertension.
IAP	Intra Abdominal Pressure.
ICP	Intra Cranial Pressure.
ICU	Intensive Care Unit.

IV	Intra Venous.
MAP	Mean Arterial blood Pressure.
MCFP	Mean Circulatory Filling Pressure.
PaCO ₂	Partial Carbon Dioxide Tension (Pressure).
PAOP	Pulmonary Artery Occlusion Pressure.
PTP	Proximal Tubular Pressure.
RVEDV	Right Ventricular End-Diastolic Volume.
SAP	Sever acute pancreatitis
SLAF	Subcutaneous anterior abdominal fasciotomy at
	linea alba
SVV	Stroke Volume Variation.
TAC	Temporary abdominal closure
TFL	Tensor fascia lata.
VR	Venous Return.
WSACS	World Society of Abdominal Compartment
	Syndrome.

Alphabetically ordered.