

Cairo University
Faculty of Veterinary Medicine
Department of Clinial Pathology

Evaluation of the antitumor effect of crude Cobra venom in mice with reference to clinicopathological changes.

Thesis Presented By

Mohamed Adel Ibrahim

(B.V.Sc., Cairo University, 2011)

For the degree of M.V. Sc.

Clinical Pathology

Under the Supervision of

Prof. Dr. Amira Hassan Mohamed

Professor of clinical pathology Faculty of Veterinary Medicine Cairo University

Prof. Dr. Nashwa Adel Abu-Aita

Professor and Head of Clinical of pathology Dept.
Faculty of Veterinary Medicine
Cairo University

Dr. Aly Fahmy Mohamed

Head of search and development sector of holding company for biological productes and vaccins

Cairo University
Faculty of Veterinary Medicine
Department of Clinical pathology

Name: Mohamed Adel Ibrahim

Date of birth: 17/3/1987

Degree: M.V. Sc.

Nationality: Egyptian

Specialization: Clinical Pathology

Title of the thesis: Evaluation of the antitumor effect of crude Cobra venom in

mice with reference to clinicopathological changes.

Supervisors:

Prof. Dr. Amira Hassan Mohamed:

Professor of Clinical Pathology Faculty of Veterinary Medicine Cairo University.

Prof. Dr. Nashwa Adel Abu-Aita:

Professor and Head of Clinical Pathology Department Faculty of Veterinary Medicine Cairo University.

Dr. Aly Fahmy Mohamed:

Head of Research and Development Sector Holding Company for Biological Products and Vaccines.

Abstract

Snake venom is composed of different proteins and enzymes which have been shown to exert beneficial effects in treatment of certain diseases due to its various biological activities. The present study was divided into two experiments. Experiment one aimed to evaluate the clinicopathological effect of Naja haje snake venom at different doses on hematological, serum biochemical parameters, oxidative damage and histopathological alterations in mice. Results showed that administration of 2.1µg/ml venom caused anemia, leukopenia, hypoproteinemia, hypoalbuminemia, decreased A/G ratio and hepatic and renal GSH, while there were significant increases in the value of total and conjugated bilirubin, activities of ALT, AST and ALP, values of serum urea, creatinine and hepatic and renal MDA levels. Snake venom caused histopathological changes in the liver, kidney and spleen of mice. Experiment two was conducted to evaluate the antitumor effect of Naja haje snake venom by I/P injection of EAC tumor cells together with snake venom in different concentrations. Group of mice injected with tumor cells alone showed anemia, significant hypoproteinemia, hypoalbuminemia decreased A/G ratio, decrease of hepatic and renal GSH, increase of total leukocytic counts and platelet counts, values of total and conjugated bilirubin, activities of ALT, AST and ALP, values of serum urea, creatinine and hepatic and renal MDA levels. Values of the tested parameters were brought back to near normal levels in groups treated with different concentrations of snake venom.

Key words: Snake venom, Ehrlish ascitis carcinoma, Clinical pathology, Naja haje, Antitumor.

Cairo University
Faculty of veterinary medicine
Department of Clinical pathology

Supervision Sheet

This thesis is under the supervision of

Prof. Dr. Amira Hassan Mohamed

Professor of Clinical pathology Faculty of Veterinary Medicine Cairo University

Prof. Dr. Nashwa Adel Abu-Aita

Professor and head of clinical pathology Dept. Faculty of Veterinary Medicine Cairo University

Dr. Aly Fahmy Mohamed

Head of search and development sector of holding company for biological productes and vaccins

<u>ACKNOWLEDGMENT</u>

First of all, prayerful thanks to ALLAH, for everything I have and who gives me the power not only to carry out this work but also during my whole life.

I wish to express my deepest gratitude to **Prof. Dr. Amira Hassan Mohamed,**Professor of Clinical Pathology, Faculty of Veterinary Medicine, Cairo University,
for her precious supervision, endless donation and infinite support during every step
that allowed me to finish my work smoothly and effectively.

I would like to express great thanks, deep gratitude and respect to my supervisor **Prof. Dr. Nashwa Adel Abu-Aita,** Professor and head of clinical Pathology Dept., Faculty of Veterinary Medicine, Cairo University for her valuable advice, follow up and continuous care.

My grateful appreciation and thanks are to **Dr. Aly Fahmy Mohamed**, head of search and development sector of holding company for biological productes and vaccins, for his continuous help and unlimited support throughout this work.

It is of great pleasure for me to express my thanks and gratitude to all members of EGYVAC – VACSERA, for their continuous help and support.

Contents

	Page
1. Introduction	1
2. Review of literature	4
3. Materials and methods	31
4. Results	44
5. Discussion	94
6. Summary and Conclusion	101
7. References	104
الملخص العربي	۲ ـ ۱

List of Abbreviations

A.F.	Ascetic fluid
ANOVA	Analysis of Variance
a-ntx	long chain alpha neurotoxins
В.	Bothrops
BC	conjugated bilirubin
BU	unconjugated bilirubin
Bcl-2	B-cell lymphoma 2
BFV	Bungarus fasciatus venom
BjV	Bothrops jararaca venom
BthTX-I	myotoxin from Bothrops jararacussu snake venom
C.	Cerastes
Cdca	Crotalus durissus cascavella
Cdcol	Crotalus durissus collilineatus
Cdt	Crotalus durissus terrificus
Cdt	Crotalus durissus terrificus
CdtV	crotalus durissus terrificus snake venom
CN	Contortrostatin
CRiSPs	cysteine-rich secretory proteins
CTLs	C-type lectins
Cvv	Crotalus viridis viridis
D.	Daboia
DENV	dengue virus
EAC	Ehrlich Ascites Carcinoma
Ec	Echis coloratus
EMT	epithelial- mesenchym altransition
EPV	Echis pyramidum venom
FCA	Freund's complete adjuvant
Fig	figure
fl	Femtolitre
ft	Feet
g/dl	gram per deciliter
gp	group
H&E	Hematoxylin and Eosin stain
HIV	Human Immunodeficiency Virus
Hrs.	Hours
H-SN1	Hydrostatin-SN1
HSV	herpes simplex virus
I/P	Intra-peritoneal
I/V	Intravenous
I/M	intramuscular
IL-1β	interleukin 1beta
ILS%	Intermetiet Life Span
L.	Leishmania
LAAO	L-amino acid oxidase

mg/dl	milligram per deciliter
Mins.	Minutes
MjTX-II	myotoxic PLA2
MP	metallo proteases
MST	Mean Survival Time
N.	Naja
NT	Neurotoxin-Nna peptide
OVCAR-5	human epithelial carcinoma cell line of ovary cells
р.	Pseudechis
PLA2s	phospholipases A2
RAPD-PCR	Random Amplification of Polymorphic DNA- polymerase
	chain reaction
ROS	reactive oxygen species
RP- HPLC	Random Amplification High-performance liquid
	chromatography
S/C	Subcutaneous
SD	Standard deviation
SDS-PAGE	sodium dodecyl sulfate polyacrylamide gel electrophoresis
SPSS	Statistical Package for Social Sciences
sv- cyst	snake venom containing cystatin a member of cysteine
	protease family inhibitors
SVMPs	snake venom metallo proteinases
SVT	snake venom toxin
TNF-α	tumor necrosis factor alpha
U.A.E	United Arab of Emirates
U/L	international unit
ul	microlitre
uM/g	micromoles per gram
VEGF	vascular endothelial growth factor
VSV	Vesicular Stomatitis Virus
WEV	Walterinessia aegyptia
Wt.	weigth
YFV	yellow fever virus

List oF Tables

Table	page
Table (1): Effect of Naja haje snake venom (different doses) on the values of erythrogram and platlets' count in mice.	49
Table (2): Effect of Naja haje snake venom (different doses) on the absolute values of leukogram in mice.	52
Table (3): Effect of Naja haje snake venom (different doses) on proteinogram of mice.	54
protemogram of fince.	
Table (4): Effect of Naja haje snake venom (different doses) on the	56
values of bilirubin in mice.	
Table (5): Effect of Naja haje snake venom (different doses) on the activities of hepatic enzymes in mice.	58
Table (6): Effect of Naja haje snake venom (different doses) on the values of serum urea and creatinine in mice.	60
Table (7): Effect of Naja haje snake venom (different doses) on the values of MDA in mice.	62
Table (8): Effect of Naja haje snake venom (different doses) on the values of GSH in mice.	63
Table (9): Effect of Naja haje snake venom (different doses) and	74
EAC on the values of erythrogram and platlets count in mice.	
Table (10): Effect of Naja haje snake venom (different doses) and EAC on the values of leukogram in mice.	78
Table (11): Effect of Naja haje snake venom (different doses) on	80
proteinogram of EAC bearing mice.	
Table (12): Effect of Naja haje snake venom (different doses) and	82
EAC on the values of bilirubin level in mice.	
Table (13): Effect of Naja haje snake venom (different doses) and EAC on the activities of hepatic enzymes in mice.	83
Table (14): Effect of Naja haje snake venom (different doses) and	85
EAC on the values of serum urea and creatinie in mice.	

Table (15): Effect of Naja haje snake venom (different doses) and EAC on the values of MDA in mice.	87
	00
Table (16): Effect of Naja haje snake venom (different doses) and	88
EAC on the values of GSH in mice.	
Table (17): Effect of Naja haje snake venom (different doses) and	90
EAC on the values of tumor parameters in mice.	
Table (18): Effect of Naja haje snake venom (different doses) and	92
EAC on the values of MST and ILS% in mice.	

List oF Figures

Figures	page
Figure (1):- Effect of different doses of Naja haje snake venom on RBCs (x10 ⁶ cells/µl) in different experimental groups of mice.	49
Figure (2):- Effect of different doses of Naja haje snake venom on Hb (g/dl) in different experimental groups of mice.	50
Figure (3):- Effect of different doses of Naja haje snake venom on PCV (%) in different experimental groups of mice.	50
Figure (4):- Effect of different doses of Naja haje snake venom on MCV (fl) in different experimental groups of mice.	51
Figure (5):- Effect of different doses of Naja haje snake venom on MCHC (%) in different experimental groups of mice.	51
Figure (6):- Effect of different doses of Naja haje snake venom on platelets (x10 ³ cells/µl) in different experimental groups of mice.	52
Figure (7):- Effect of different doses of Naja haje snake venom on total leukocytic count (TLC) (x10 ³ cells/µl) in different experimental groups of mice.	53
Figure (8):- Effect of different doses of Naja haje snake venom on neutrophils (x10 ³ cells/µl) in different experimental groups of mice.	53
Figure (9):- Effect of different doses of Naja haje snake venom on lymphocytes (x10 ³ cells/µl) in different experimental groups of mice.	54
Figure (10):- Effect of different doses of Naja haje snake venom on total proteins (g/dl) in different experimental groups of mice.	55
Figure (11):- Effect of different doses of Naja haje snake venom on albumin (g/dl) in different experimental groups of mice.	55
Figure (12):- Effect of different doses of Naja haje snake venom on A/G ratio in different experimental groups of mice.	56
Figure (13):- Effect of different doses of Naja haje snake venom on total bilirubin (mg/dl) in different experimental groups of mice.	57
Figure (14):- Effect of different doses of Naja haje snake venom on conjugated bilirubin (mg/dl) in different experimental groups of mice.	57
Figure (15):- Effect of different doses of Naja haje snake venom on	58

unconjugated bilirubin (mg/dl) in different experimental groups of	
mice.	
Figure (16):- Effect of different doses of Naja haje snake venom on ALT (U/L) in different experimental groups of mice.	59
Figure (17):- Effect of different doses of Naja haje snake venom on AST (U/L) in different experimental groups of mice.	59
Figure (18):- Effect of different doses of Naja haje snake venom on ALP (U/L) in different experimental groups of mice.	60
Figure (19):- Effect of different doses of Naja haje snake venom on serum urea (mg/dl) in different experimental groups of mice.	61
Figure (20):- Effect of different doses of Naja haje snake venom on serum creatinine (mg/dl) in different experimental groups of mice.	61
Figure (21):- Effect of different doses of Naja haje snake venom on hepatic MDA (µM/g protein) in different experimental groups of mice	62
Figure (22):- Effect of different doses of Naja haje snake venom on renal MDA (µM/g protein) in different experimental groups of mice.	63
Figure (23):- Effect of different doses of Naja haje snake venom on hepatic GSH (µM/g protein) in different experimental groups of mice.	64
Figure (24):- Effect of different doses of Naja haje snake venom on renal GSH (µM/g protein) in different experimental groups of mice.	64
Figure (25):- Liver of mice inoculated with 1\2 LD50 of snake venom showing hepatic necrosis associated with mononuclear cell infiltration on the 10th day post envenomation. (H&E X400).	65
Figure (26):- Liver of mice inoculated with 1\2 LD50 of snake venom showing kupffer cells activation and sinusoidal leucocytosis on the 10 th day post envenomation (H&E X400).	65
Figure (27):- Liver of mice inoculated with 1/2 LD50 of snake venom showing dilatation of hepatic portal vein and inflammatory cells infiltration on the 20 th day of the experiment (H &E X100).	66

Figure (28):- Liver of mice inoculated with 1/2 LD50 of snake venom on the 30 th day of the experiment, the liver tissue showed no histopathological alteration (H &E X100).	66
Figure (29):- Liver of mice envenomated with 1/10 LD50 of snake venom showing slight vacuolation of hepatocytes on the 10 th day of the experiment. (H &E X400).	67
Figure (30):- Liver of mice envenomated with 1/10 LD50 of snake venom showing no histopathological changes on the 20 th day of the experiment (H &E X400).	67
Figure (31):- Focal tubular necrosis with mononuclear cells infiltration as well as renal blood vessel congestion, hemorrhage and vascular degeneration of renal epithelium were observed in kidney of mice of group 4 envenomated on the 10 th day of the experiment (H &E X200).	68
Figure (32):- Vacuolation of epithelial lining renal tubules and endothelial lining glomerular tufts were noticed in kidney of mice inoculated with 1/10 and 1/20 LD50 of snake venom on the 10 th day of the experiment (H &E X200).	68
Figure (33):- No histopathological alterations were observed in the kidney of mice of groups 2 and 3 on the 20 th and 30 th days of the experiment (H &E X 400).	69
Figure (34):- Spleen of mice of group 4 showing depletion in the lymphocytic cells of the white pulps on the 10 th day post envenomation (H &E X40).	69
Figure (35):- spleen of mice envenomated with 1\2 LD50 of snake venom showing increased number of megakaryoblast in the red pulp of spleen of mice of group 4 on the 20 th day of the experiment. (H &E X100).	70
Figure (36):- Spleen of mice of group 4 showing focal hyalinosis of the stromal connective tissue on the 30 th day of the experiment (H &E X100).	70
Figure (37):- Effect of Naja haje snake venom (different doses) and EAC on RBCs (x10 6 cells/ μ l) in different experimental groups of mice.	75
Figure (38):- Effect of Naja haje snake venom (different doses) and	75
EAC on Hb (g/dl) in different experimental groups of mice.	

EAC on PCV (%) in different experimental groups of mice.	
Figure (40):- Effect of Naja haje snake venom (different doses) and EAC on MCV (fl) in different experimental groups of mice.	76
Figure (41):- Effect of Naja haje snake venom (different doses) and EAC on MCHC (%) in different experimental groups of mice.	77
Figure (42):- Effect of Naja haje snake venom (different doses) and EAC on Platelets count $(x10^3 \text{ cells/}\mu\text{l})$ in different experimental groups of mice.	77
Figure (43):- Effect of Naja haje snake venom (different doses) and EAC on WBCs (x10 3 cells/ μ l) in different experimental groups of mice.	78
Figure (44):- Effect of Naja haje snake venom (different doses) and EAC on neutrophils (x10 3 cells/ μ l) in different experimental groups of mice.	79
Figure (45):- Effect of Naja haje snake venom (different doses) and EAC on lymphocytes (x10 ³ cells/µl) in different experimental groups of mice.	79
Figure (46):- Effect of Naja haje snake venom (different doses) and EAC on total proteins (g/dl) in different experimental groups of mice.	80
Figure (47):- Effect of Naja haje snake venom (different doses) and EAC on albumin (mg/dl) in different experimental groups of mice.	81
Figure (48):- Effect of Naja haje snake venom (different doses) and EAC on A/G ratio in different experimental groups of mice.	81
Figure (49):- Effect of Naja haje snake venom (different doses) and EAC on total bilirubin (mg/dl) in different experimental groups of mice.	82
Figure (50):- Effect of Naja haje snake venom (different doses) and EAC on conjugated bilirubin (mg/dl) in different experimental groups of mice.	83
Figure (51):- Effect of Naja haje snake venom (different doses) and EAC on ALT (U/L) in different experimental groups of mice.	84
Figure (52):- Effect of Naja haje snake venom (different doses) and EAC on AST (U/L) in different experimental groups of mice.	84
Figure (53):- Effect of Naja haje snake venom (different doses) and EAC on ALP (U/L) in different experimental groups of mice	85

Figure (54):- Effect of Naja haje snake venom (different doses) and EAC on serum urea (mg/dl) in different experimental groups of mice.	86
	96
Figure (55):- Effect of Naja haje snake venom (different doses) and	86
EAC on serum creatinine (mg/dl) in different experimental groups of	
mice.	
Figure (56):- Effect of Naja haje snake venom (different doses) and	87
EAC on hepatic MDA (µM/g protein) in different experimental	
groups of mice.	
Figure (57):- Effect of Naja haje snake venom (different doses) and	88
EAC on renal MDA (μM/g protein) in different experimental groups	
of mice.	
Figure (58):- Effect of Naja haje snake venom (different doses) and	89
EAC on hepatic GSH (µM/g protein) in different experimental	
groups of mice.	
Figure (59):- Effect of Naja haje snake venom (different doses) and	89
EAC on renal GSH (µM/g protein) in different experimental groups	
of mice.	
Figure (60):- Effect of Naja haje snake venom (different doses) and	90
EAC on volume of ascetic fluid (ml) in different experimental groups	
of mice.	
Figure (61):- Effect of Naja haje snake venom (different doses) and	91
EAC on viable cells in ascetic fluid (10 ⁶ /ml) in different experimental	
groups of mice.	
Figure (62):- Effect of Naja haje snake venom (different doses) and	91
EAC on protein content in ascetic fluid (g/dl) in different	
experimental groups of mice.	
Figure (63):- Effect of Naja haje snake venom (different doses) and	92
EAC on body weight (g) in different experimental groups of mice.	
Figure (64):- Effect of Naja haje snake venom (different doses) and	93
EAC on MST (days) in different experimental groups of mice.	
Figure (65):- Effect of Naja haje snake venom (different doses) and	93
EAC on ILS (%) in different experimental groups of mice.	

1- INTRODUCTION

Venomous snakes are species of the suborder Serpentes that are capable of producing venom which is used by the snake for immobilizing prey via mechanical injection by fangs. Common venomous snakes include the families; Elapidae, Viperidae, Atractaspididae and some of the Colubridae (McCartney et al., 2014). The Elapidae family of venomous snakes is found in tropical and subtropical regions around the world. It includes cobras, mambas, sea snakes and coral snakes. Several species of cobras are natives to Africa. The Egyptian cobra Najahaje found from southern Egypt to northern South Africa.

Snake venom is highly modified saliva made up of venom glands. The glands which secrete the zootoxins are a modification of the parotid salivary gland of other vertebrates and are usually situated on each side of the head below and behind the eye, encapsulated in a muscular sheath. The glands have large alveoli in which the synthesized venom is stored before being conveyed by a duct to the base of channeled or tubular fangs, through which it is ejected (Hallidayand Tim, 2002).

Venoms contain more than 20 different compounds, mostly proteins and polypeptides. It is a complex mixture of several substances, such as toxins, enzymes, growth factors, activators and inhibitors with a wide spectrum of biological activities (**Lipps, 1999**). These proteins are responsible for the toxic and lethal effect of the venom, enzymes play an important role in the digestion of prey, and various other substances are responsible for important but non-lethal biological effects. Some of the proteins in snake venom are very particular in their effects on various biological functions including blood coagulation, blood pressure regulation and transmission of the nervous or muscular impulse and have