Ultrasound-Guided Versus Landmark-Guided Femoral Vein Access in Pediatric Cardiac Catheterization

Thesis

Submitted for Partial Fulfillment of Master Degree in Cardiology

Presented By **Zeinab Hassan Abd El Haleem** *M.B.B.Ch.*

Supervised by

Prof. Maiy Hamdy El SayedProfessor of Cardiology

Faculty of Medicine - Ain Shams University

Prof. Ghada Samir El ShahedProfessor of Cardiology
Faculty of Medicine - Ain Shams University

Dr. Basem El Said EnanyLecturer of Cardiology

Faculty of Medicine - Ain Shams University

Faculty of Medicine

استخدام الموجات فوق الصوتية في تحديد مكان الوريد الفخذي مقارنة باستخدام التحديد التشريحي له في عمليات قسطرة القلب للأطفال

رسالة توطئة للحصول على درجة الماجستير في أمراض القلب والأوعية الدموية

مقدمة من الطبيبة / زينب حسن عبد الحليم همام بكالوريوس الطب والجراحة

تحت إشراف

الأستاذة الدكتورة/ مي حمدي السيد أستاذ أمراض القلب والأوعية الدموية كلية الطب - جامعة عين شمس

الأستاذة الدكتورة/ غادة سمير الشاهد أستاذ أمراض القلب والأوعية الدموية كلية الطب - جامعة عين شمس

الدكتور/ باسم السعيد عناني مدرس أمراض القلب والأوعية الدموية كلية الطب - جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١١

SUMMARY

Vascular access in infants and children with multiple prior catheterizations can pose a significant challenge to the pediatric interventional cardiologist and may consume up to 25% of the entire procedure time. Guidance for vascular access is traditionally based on external anatomical landmarks, the technique of locating surface landmarks and palpation was used to assist in vascular access. Success in these procedures has relied upon a good working knowledge of vascular anatomy and identification of surface landmarks by visual inspection and palpation.

In the last 30 years, the US guided-technique starts to play important roles in vascular access. At first physicians stared to use audio Doppler which provided for more accurate guidance of the puncture procedure. Now the ultrasound procedure of choice is the two-dimensional ultrasound scan, or so-called B-scan. With color-Doppler imaging, irregular blood flow or differences in flow velocity can be measured. This can be helpful in determining the access site and in optimizing the exact localization of catheter placement.

The needle can be guided through the tissue directly or indirectly. In indirect ultrasound guidance, ultrasound scans are performed before puncture and needle insertion is without

Ain Shams University 2011

Acknowledgement

First of all, thanks to "Allah" to whom I relate my success in achieving any work in my life.

I would like to express my deepest gratitude and sincere thanks to Prof. Maiy Hamdy El Sayed Professor of Cardiology, Faculty of Medicine, Ain-Shams University, for her supervision, continuous guidance and valuable instructions.

I will never be able to express my deepest feelings and profound gratitude to Prof. **Ghada Samir El Shahed** professor of Cardiology, Faculty of Medicine, Ain-Shams University, for her expert guidance, valuable suggestions and excellent supervision.

I will never be able to express my deepest feelings and gratitude to Dr. Basem El Said Enany Lecturer of Cardiology Faculty of Medicine, Ain-shams University for his supervision and valuable suggestions.

Finally, I would like to address my family especially my mother and my father and thank them for their unlimited support and care.

List of Contents

Title	Page
Introduction	1
Aim of the Work	3
Review of Literature	4
Patients and Methods	68
Results	74
Discussion	101
Conclusion	116
Limitations	117
Recommendations	118
Summary	119
References	122
Arabic Summary	_

List of Figures

Fig.	Title	Page
1	Femoral triangle anatomy	12
2	Illustration of umbilical vein and arteries.	19
3	Umbilical vein catheterization	22
4	Sterile probe sheath kit	50
5	Examples of linear array transducers	51
6	Typical vascular probe	51
7	Indirect "find and mark" technique, locating the internal jugular vein	53
8	The Smart needle assembly and monitor	54
9	Linear array transducer with needle guide attachment	55
10	The short-axis approach	57
11	The long-axis approach	58
12	Images showing short axis (upper images) and long axis imaging (lower images)	58
13	Vascular Access Algorithm.	61
14	Doppler flow of a thrombosed femoral vein	64
15	Presence of a arteriovenous fistula between superficial femoral artery and vein,	64
16	Doppler flow of a thrombosed femoral artery	65
17	Presence of a thrombus in the superficial femoral artery	66
18	Access rate in US, LM in femoral vein group.	79

List of Figures (Cont.)

Fig.	Title	Page
19	Procedure time in US and LM in femoral vein group	81
20	Access rate between US, LM in femoral vein and artery group	87
21	Procedure time in US, LM in femoral artery and vein group.	89
22	Access rate between LM, US in femoral artery.	92
23	Procedure time between LM, US in femoral artery	94

List of Tables

Tab. No.	Title	Page
1	Shows mean age and weight of both LM and US group	74
2	Patients and procedural variables	75
3	LM and US subgroups	76
4	Comparison of access rate between the US group and LM group	78
5	Comparison of procedure time between the US group and LM.	80
6	comparison between the US group and LM group in relation to mean procedure time and mean no of attempt	82
7	Comparison of the complications between LM group and US (Access through femoral vein).	84
8	Comparison of success rate in femoral vein access between LM group and US group.	86
9	Comparison of procedure time in femoral vein access between LM and US group.	88
10	Comparison of success puncture of femoral artery between LM group and US group.	91
11	comparison of success procedure of femoral artery between LM group and US group	93
12	Comparison of the complication between LM group and US group (access through femoral vein and artery).	96

List of Tables (Cont.)

13	Number of needle pass and successful canulation on first needle pass between LM and US group in femoral vein access.	97
14	Number of needle pass and successful canulation on first needle pass between LM and US group in femoral artery access.	98
15	Number of attempt on femoral vein access (Froehlich CD, et al., 2010).	106

List of Abbreviations

2D US	two-dimensional ultrasound
3D US	Three-dimensional ultrasound
4D US	four-dimensional ultrasound
ACEP	American College of Emergency Physicians
ARVA	Alternate routes of vascular access
CBC	Complete blood picture
CHD	congenital heart disease
CVC	Central venous catheterization
DVT	Deep venous thrombosis
ECMO	Extracorporal membrane oxygenation
	1
FA	Femoral artery
FA FV	
	Femoral artery
FV	Femoral artery Femoral vein
FV IJV	Femoral artery Femoral vein Internal jugular vein
FV IJV IV	Femoral artery Femoral vein Internal jugular vein Intravenous
FV IJV IV LM	Femoral artery Femoral vein Internal jugular vein Intravenous Landmark
FV IJV IV LM NICE	Femoral artery Femoral vein Internal jugular vein Intravenous Landmark National Institute for Clinical Excellence
FV IJV IV LM NICE	Femoral artery Femoral vein Internal jugular vein Intravenous Landmark National Institute for Clinical Excellence Peripheral pulsation

INTRODUCTION

Over the past decade, the pediatric catheterization laboratory, while continuing to play a significant role in anatomic and hemodynamic diagnosis, has evolved a therapeutic function (Mullins CE et al., 1990). With this augmented use of catheterization procedures, it becomes important to make sure that vascular complications are reduced to a minimum.

Previous studies addressing the incidence and risk factors of these vascular complications have been based on retrospective analyses of cohorts who underwent vascular access procedures (**Toursarkissian B et al., 1997**). All such procedures, both diagnostic and interventional, are associated with some risk. The ability to obtain reliable and safe venous access is important in the management of pediatric patients. Although the procedure for landmark-based placement of catheters is well known, the technique is not without significant complications.

In recent decades, external landmark techniques have been used in pediatric catheterization, but there are sometimes technical difficulties, such as anomalies in anatomy of vascular structures, dependency on the patient's movements, and an increased variability of vessel position related to adhesive structures of the perivascular area. The landmark method fails, irrespective of anatomy, if the vein has thrombosed and may lead the operator to pass the needle in an inappropriate direction. All can result in a difficult puncture with or without complications. Thus, as early as in 1984, authors have recommended utilizing ultrasound guidance to optimize the success rate of cannulations and to minimize complications (**Legler D et al., 1984**).

Dynamic ultrasound (real time ultrasound) and static ultrasound are the two basic techniques utilized in ultrasound assisted procedures. When using dynamic ultrasound the anatomy and needle are visualized with the ultrasound machine throughout the entire procedure. The needle or the ultrasound artifact it produces is visualized thus assuring correct vessel cannulation. When using static ultrasound, the anatomy is surveyed with ultrasound prior to performing the procedure. A point of entry in the skin is identified and the procedure is then performed without continuous ultrasound visualization. Although both techniques can be utilized, dynamic imaging is superior and is used in most studies (Slama M et al., 1997).

Few reports have discussed the issue of safer and more reliable femoral vein access in pediatric catheterization. This study will evaluate whether an ultrasound-guided technique can improve on the traditional landmark-guided technique in facilitating access to the femoral vein in the pediatric cardiac catheterization laboratory.

AIM OF THE STUDY

This study aims to evaluate whether an ultrasound-guided technique can improve on the traditional landmark-guided technique in facilitating access to the femoral vein and in decreasing the complications in the pediatric cardiac catheterization laboratory.