The Role of the Recent Biomarkers In Sepsis

Essay
Submitted for Partial Fulfillment of master degree in
Intensive Care Medicine

By Emil Attallah Ayoub

M.B.B. Ch (2006) Faculty of Medicine

Supervised by

Prof. Dr. Sherif Wadie Nashed

Professor of Anaesthesia and Intensive Care Faculty of Medicine – Ain Shams University

Dr. Noha Mohamed Elsharnouby

Assistant Professor of Anesthesia and Intensive care Faculty of Medicine – Ain Shams University

Dr. Hanna Abd Allah Elgendy

Lecturer of Anaesthesia and Intensive Care Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University 2011

دور الدلالات الحيوية الحديثة في تعفن الدم

رسالة توطئة للحصول على درجة الماجستير في الرعاية المركزة

مقدمة من الطبيب / اميل عطاالله ايوب بكالوريوس الطب والجراحة 2006

تحت إشسراف الدكتور/ شريف وديع ناشد الأستاذ التخدير والرعاية المركزة كلية الطب _ جامعة عين شمس

الدكتورة / نهى محمد الشرنوبى أستاذ مساعد التخدير والرعاية المركزة كلية الطب – جامعة عين شمس

الدكتورة / هناء عبد الله الجندى مدرس التخدير والرعاية المركزة كلية الطب _ جامعة عين شمس

كلية الطب جامعة عين شمس 2011

Summary

Sepsis is a leading cause of death in ICU despite modern antibiotics and resuscitation therapies. SIRS is characterized by 2or more of the following; body temperature $\geq 38^{\circ}$ C or $\leq 36^{\circ}$ C HR 90, WBC 12, 000 or 4000 cell per mm³ if source of infection is suspected or known this is known as sepsis if associated with organs dysfunction is called severe sepsis but septic shock in defined as severe sepsis associated with hypotension despite adequate fluid resuscitation.

Pathogenesis of sepsis involves interaction between multiple microbial factors and host factors and the out come depends on capability of the immune system, endothelium and haemostatic mechanism to contain and eliminate the process. Microbial factors include (gram positive, negative, mixed and fungal infection) and most common sources of infections are respiratory 50%, abdomen and pelvis 25%, urinary tract 10%, skin 5%, IV catheter 5% and others 10%. Host factors as race, age and comorbities.

Pathophysiology of sepsis includes coagulation system activation as activation of pro-coagulant pathway and imbalance of homeostasis; hypothalamic – adrenal axis dysfunction and microcirculatory dysfunction lead to multi organs failure. There are many hypotheses initiate and perpetuate multi organs failure as gut hypotheses, tissue hypothesis, two events hypotheses and integrated hypothesis.

used Disease-severity scoring systems are for patients stratification of for utilization management, performance assessment, and clinical research as SOFA score, MODS score, APACH score, PIRO score and SAP score.but their calculations require types of data that are frequently unavailable.

Acknowledgment

First and forever thanks for My God, the most merciful and the most compassionate, without his help nothing could be done.

I would like to express my gratitude to **Prof. Dr.**Sherif Wadie Nashed Professor of Anaesthesia and Intensive Care, Faculty of Medicine – Ain Shams University for giving me the honor of working under his supervision and providing me a lot of encouragement and support.

I can never describe my feelings towards **Dr. Noha**Mohamed Elsharnouby Assistant Professor of

Anesthesia and Intensive care, Faculty of Medicine – Ain

Shams University because her kindness; I owe a heavy debt

of gratitude for her fruitful remarks and endless care.

I am greatly indebted to Dr. Hanna Abd Allah Elgendy Lecturer of Anaesthesia and Intensive Care, Faculty of Medicine – Ain Shams University for her valuable guidance and support. With great patietience, she sustained and directed me through out the whole study. I much acknowledge her efforts and thank her for being caring meticulous.

My great appreciation is extended to all those who shared either practically. or morally in the accomplishment of this work.

CONTENTS

Chapter	Page
List of Figures	I
List of Tables	II
List of Abbreviations	III
Introduction	1
Aim of Work	4
Review of literature: Chapter 1: Pathophysiology of sepsis. Chapter 2: Biomarkers in sepsis. Chapter 3: Role of Biomarkers in diagnosis of sepsis. Chapter 4: Management of sepsis.	5 46 51 82
Summary & Conclusion	116
References	121
Arabic summary	

Lists

List of Figures

	Page
Review of literature	
Figure(1): Circulatory failure in sepsis	18
Figure(2): Mechanism of sepsis associated encephalopathy	41
Figure(3): Cytokines in sepsis	63
Figure(4): Procalcitonin in sepsis	66
Figure(5): Early goal-directed therapy	85
Figure(6): Goal-Directed Protocol	86
Figure(7): 28-day mortality rate	99
Figure(8): Statin in sepsis	103

List of Tables

	Page	
Review of literature		
Table (1): Source of infection.	10	
Table (2): Diagnostic criteria of sepsis.	24	
Table (3): The Sepsis-Related Organ Failure Assessment Scoring System.	26	
Table (4): Multi- Organ Dysfunction Score.	28	
Table (5): APACHE II Severity of Disease Score (ADULTS) - Assessment given is for NON-operative ICU adult patients.	29 – 33	
Table (6): SAPS II (New Simplified Acute Physiology Score).	35,36	
Table (7): Laboratory diagnosis of sepsis.	43,44	
Table (8): Microbiology of sepsis.	44 , 45	
Table (9): Principal causes of PCT increase.	64	
Table (10): Difference Predictors of Infection between C-reactive protein, procalcitonin, and TREM.	70	
Table (11): Recommended antibiotics in septic shock.	88	

List of Abbreviations

AAG	al-acid glycoprotein
ADAMTS	A Disintegrin- like and metalloprotease with thrombospondin type 1 motif
AIDS	Acquired immuno-deficiency syndromes
ALI	Acute lung injury
AMS	Anti microbial treatments
aPTT	Activated partial thromboplastin time
APACHE score	Acute physiological and chronic health evaluation
APC	Activated protein c
ARDS	Acute respiratory distress syndromes
ARF	Acute renal failure
AT111	Anti thrombin 111
BPI	Bactericidal/permeability-increasing protein
CD	Cluster of differentiation
CIP	Critical illness polyneuropathy
CIRCI	Critical illness related corticosteroid insufficiency
CNP	c-type natriuretic peptide
C-RP	C-reactive protein
CSIF	Cytokines synthesis inhibitory factor
DIC	Disseminated intravascular coagulopathy
DO	Oxygen delivery
EGDT	Early goal directed therapy
FIO ₂	Fractional inspired oxygen

Lists

GMP	Guanosine monophpsphate
НВР	Heparin binding protein
HMGB	High mobility group box1
НО	Hem oxygenase
ICAM	Intercellular adhesion molecule
IL18BP	Interleukin 18 Binding protein
IL	interleukin
INR	International normalization ratio
LDL	Low density lipoprotein
LPS	lip polysaccharides
LPB	Lip polysaccharide binding protein
MAP	Mean arterial pressure
MDF	Myocardial depressant factor
MODS	Multi organ failure dysfunction syndromes
MMDS	Microcirculatory and mitochondrial distress syndromes
NPV	Negative predictive value
NF-6B	Nuclear factor 6B
NO	Nitrous oxide
NOS	Nitrous oxide synthesis
PAMPS	Pathogen associated molecular pattern
PaO2	Arterial oxygen tension
PAR	Pressure adjusted heart rate
PAI	Plasminogen activator inhibitor
PCT	Plasma Procalcitonin
PIRO	Predisposition insults/injuries response organ dysfunction
PPV	Positive predictive value
PRRS	Pattern recognition receptor
PT	Prothrmbin time

Lists

Related adrenal insufficiency
Ristocetin co factor activity
Recombinant activated protein C
Saline versus albumin fluid evaluation
Simplified acute physiological score
Systolic blood pressure
Central venous oxygen saturation
Standard deviation
Systemic inflammatory response syndrome
Sepsis related organ failure
Soluble triggering receptor expressed on myeloid cells
Mixed Venous oxygen saturation
Thrombin anti thrombin complex
Tissue factor pathway inhibitor
Transforming growth factor
Toll like receptor
Thrombomoduline
Tumor necrosis factor
Tissue –type plasminogen activator
Urokinase –type plasminogen activator
Ventilator associated pneumonia
Vascular cell adhesion molecule
Volume substitution and insulin therapy in severe sepsis
Venous thrombo embolism
Von will brad factor
Von will brad factor cleaving protein
White blood cell

Introduction And Aim Of Work

Introduction

Sepsis is a common cause for admission to the intensive care unit and associated with increased morbidity and mortality. Systemic inflammatory response syndrome is defined as a complex activation of immune system and characterized by altered body temperature < 36°C or > 38°C, hyperventilation (tachypnea > 20 breaths/min. or PaCO2 < 30 mm Hg) and altered leukocyte count (< 4, 000 or > 12, 000 cells per mm3), while sepsis is defined as systemic inflammatory response syndrome in conjunction with documented infection and if sepsis associated with organ dysfunction is called as severe sepsis. Septic shock is defined as sepsis associated with hypotension, despite adequate fluid resuscitation (**Dellinger et al., 2008**).

Pathogenesis of sepsis involves an interaction between multiple microbial and hosts factors, the outcome of the process depend on the capability of the immune system, endothelium and haemostatic mechanisms to contain and eliminate the process. The survival depends on the ability to recognize invading pathogens and to respond to them rapidly. Many defenses against microbes are innate rather than adaptive to the particular pathogen. The innate immune system includes macrophages and natural killer cells, which may act directly on the pathogen or by releasing cytokines and expressing certain other stimulatory molecules triggers of the adaptive immune responses by activating T and B cells which have precise specificity in recognizing antigens (Eliezer et al., 2007).

Pathogenesis of sepsis also results from an exaggerated systemic inflammatory response induced by infectious microorganisms which release inflammatory mediators that cause injury to capillary endothelium leading to vasodilatation together with capillary leak resulting in loss of intravascular

Introduction and Aim of The Work

fluid into interstitial space causing hypovolemia and tissue hypoxia (Zeni et al., 2002).

The progressive dysfunction of organ systems that characterize multiorgan dysfunction syndromes (MODS) usually occurs in a predictable manner. During the first 72 hours of the original insult, respiratory failure commonly occurs. This is followed by hepatic failure (5 to 7 days), gastrointestinal bleeding (10 to 15 days), and finally renal failure (11 to 17 days). The pathophysiologic processes leading to MODS have not been well defined. However, there are several hypotheses of the mechanisms that initiate and perpetuate multiorgan dysfunction syndrome (**Abraham et al., 2007**).

The Early Goals -Directed Therapy within first 6 hours are: Central Venous Pressure 8-12 mm Hg (12-15 in ventilator pts), mean arterial pressure > 65 mm Hg, urine output > 0.5 ml/kg/hr, ScvO2orSvO2≥70%; If not achieved with fluid resuscitation during first 6 hours: Transfuse packed red blood cells to hematocrit > 30% and/or Administer dobutamine (max 20 mcg/kg/min) to goal (**Otero et al., 2006**).

There are several biomarkers, which have roles in sepsis they are cytokines/chemokines biomarkers, cell membrane biomarkers, receptor biomarkers, , coagulation biomarkers, biomarkers of organ dysfunction, biomarkers related to vasodilatation, biomarkers related to vascular endothelial damage and others like Beta-thrombo globulin, Eicosanoid and Elastase (Winters et al., 2010).

Cytokines/chemokines biomarkers such as IL-8, IL-12 has a role in prediction of lethal outcome, cell membrane biomarkers as CD80, has a role in prediction of septic shock, receptor biomarkers as C512, IL-2 receptors, has a role in prediction of septic shock, coagulation biomarkers as PF-4 has a role in prediction of response to therapy, biomarkers of organ

2

Introduction and Aim of The Work

dysfunction such as Gc-globulin, hepatocyte and growth factors, biomarkers related to vascular endothelial damage as Angiopoietin has a role in predication development of sepsis and other bio markers like Bet- thrombo globulin, Eicosanoid and Elastase, which have role in prediction of response to therapy (Marshall et al., 2009).

3

Aim of The Work

To review many recent biomarkers in diagnosis and management of sepsis.