

Utilization of Pregnancy Assosciated Plasma Protein-A (PAPP-A) as a Diagnostic Marker for Acute Coronary Syndromes

Thesis
Submitted for Partial Fulfillment of master degree in cardiology

By **Mohamed Abdelsameaa Shehata**M.B.B.Ch.Ain Shams University

Under Supervision of

Prof. Dr. Assem Mohamed Fathy

Professor of cardiology Ain Shams University

Prof. Dr. Amr Adel

Assistant Professor of cardiology Ain Shams University

Dr. Mazen Tawfeek

Lecturer of cardiology Ain Shams University

First and foremost, I thank God for helping and guiding me in accomplishing this work.

I would like to express my sincere gratitude to *Prof. Dr. Assem Mohamed Fathy*, Professor of Cardiology, Ain Shams University, for his great support and stimulating views. His active, persistent guidance and overwhelming kindness have been of great help throughout this work.

A special tribute to *Prof. Dr. Amr Adel*, Assistant Professor of Cardiology, Ain Shams University, for his supervision and advice. They meant a lot for me.

I must extend my warmest gratitude to *Dr. Mazen Tawfek*, Lecturer of Cardiology, Ain Shams University, for his great help and faithful advice. His continuous encouragement was of great value and support to me.

Also,I cannot forget to send my gratfulness to *Prof. Dr. Maha Ezz El deen*, professor of Clinical Pathology, Ain Shams University, for her great help in order to reach the success of this work. Really, I owe much to her.

Last but definitely not least, I would like to thank my family for always being there for me and for all the suffering and hardships I made them face from the day I entered this world. To them I owe my life.

LIST OF CONTENTS

Subject Pa	
Introduction	1
Aim of The Work	3
Review of Literature	5
Chapter 1: Atherosclerosis	5
Chapter 2: Cardiac biochemical markers of acute	
coronary syndromes	52
Chapter 3: Pregnancy associated plasma	
protein-A (PAPP-A), a new marker	
of acute coronary syndromes	84
Patients & methods	92
Results	101
Discussion	134
Summary	147
Conclusion	150
Recommendations	151
References	152

Master Table

الملخص العربي

LIST OF FIGURES

Fig. (1)	Schematic diagram for the endothelial cell	6
Fig. (2)	Schematic diagram showing arterial wall layers	8
Fig. (3)	Schematic diagram showing stages of atherosclerotic affection of an artery	10
Fig. (4)	Endothelial dysfunction in atherosclerosis	13
Fig. (5)	Small vessel atherosclerosis (left),has many features in common with large vessel atherosclerosis (right)	19
Fig. (6)	Fatty streak formation in atherosclerosis	22
Fig. (7)	Cross-section of a human coronary atherosclerotic lesion	22
Fig. (8)	Formation of an advanced, complicated lesion of atherosclerosis	24
Fig. (9)	The expression of PAPP-A determined immunohistochemically by staining with antihuman PAPP-A monoclonal antibodies (reddish-brown areas)	87
Fig. (10)	Distribution of males & females among the study population	103
Fig. (11)	Distribution of major risk factors among the study population	106
Fig. (12)	Dynamic ST changes & left ventricular EF% among the study population	108
Fig. (13)	Distribution of number of coronary arteries affected among the study population	111

Fig. (14)	Distribution of different types of atherosclerotic plaques among the study population	112
Fig. (15)	Mean CK-T & CK-MB levels in the study groups	116
Fig. (16)	Mean serum PAPP-A level in the study groups	117
Fig. (17)	Mean serum PAPP-A level in relation to patient sex in the study population	119
Fig. (18)	Mean serum PAPP-A levels in relation to major risk factors among the study population	122
Fig. (19)	Mean serum PAPP-A level in relation to dynamic ECG changes among the study population	126
Fig. (20)	Mean serum PAPP-A level in relation to Troponin T positivity among the study population	128
Fig. (21)	Mean serum PAPP-A level in relation to number of coronaries among the study population	129
Fig. (22)	Mean serum PAPP-A level in relation to type of coronary plaques among the study population	131
Fig. (23)	Mean serum PAPP-A level in relation to final diagnosis of the study population	132

LIST OF TABLES

Table (1)	Types of atherosclerotic coronary lesions as classified by AHA	98
Table (2)	Distribution of age & sex among the study population	102
Table (3)	Distribution of major risk factors among the study population	105
Table (4)	Presence of third heart sound among the study population	107
Table (5)	Distribution of: dynamic electrocardiographic changes,left ventricular EF% & serum creatinine among the study population	109
Table (6)	Pattern of coronary atherosclerosis among the study population	113
Table (7)	Cardiac biochemical markers as detected among the study population	115
Table (8)	Serum PAPP-A levels among the study population regarding mean value & standard deviation	117
Table (9)	Relation between patients' sex & serum PAPP-A levels among the study population	119
Table (10)	Relation between patients' risk factors & serum PAPP-A levels among the study population	123
Table (11)	Relation between patients' dynamic ECG changes,LV performance & serum PAPP-A	125

	levels among the study population	
Table (12)	Relation between patients' Troponin T positivity & serum PAPP-A levels among the study population	127
Table (13)	Relation between number of coronaries affected & serum PAPP-A levels among the study population	129
Table (14)	Relation between type of angiographically assessed coronary plaques & serum PAPP-A levels among the study population	130
Table (15)	Relation between final diagnosis of the studied population & serum PAPP-A levels	132

LIST OF ABBREVIATIONS

2VD Two vessel disease.

ABI Ankle brachial index.

ABP Arterial blood pressure

ACE Angiotensin converting enzyme.

ACS Acute coronary syndrome

ADP Adenosine diphosphate.

AHA American Heart Assosciation.

ALT Alanine aminotransferase.

AMI Acute myocardial infarction.

AST Aspartate aminotransferase.

ASTc Cytoplasmic aspartate aminotransferase.

ASTm Mitochondrial aspartate aminotransferase.

BNP B-Natrieuretic peptide.

C3 Complement 3.

CA Coronary angiography.

CAC Coronary artery calcification.

CCA Common carotid artery.

CFVR Coronary flow velocity reserve.

CHD Coronary heart disease

Ck-MB Creatine Kinase MB isoenzyme

CK-T Creatine kinase-Total.

CMV Cytomegalovirus.

CRP C-reactive protein

CSA Chronic stable angina.

CT Computed Tomography.

DM Diabetes mellitus.

EBT Electron beam tomography.

ECG Electrocardiogram.

ED Emergency department.

EF Ejection fraction.

ELISA Enzyme linked immunosorbent assay.

ELISA Enzyme linked immunosorbent assay.

FMD Flow mediated dilatation.

GPBB Glycogen phosphorylase BB isoenzyme.

HDL High density lipoprotein.

h-FABP Heart fatty acid binding protein.

HGF Hepatocyte growth factor.

HS Highly significant.CCU Coronary Care Unit.

hs-CRP High sensitivity C-reactive protein.

HTN Hypertension

HVMLC-1 Human ventricular myosin light chain isotype-1.

IGF-1 Insulin like growth factor-1.

IgG Immunoglobulin G.

IL 1B Interleukin 1B.

IL-1Ra Interleukin-1 receptor antagonist.

IL6 Interleukin 6.

IMA Ischemia modified albumen.

IMT Intima media thickness.

KDa Kilo Dalton.

LDL Low density lipoprotein

Lp(a) Lipoprotein (a).

LVEF Left ventricular ejection fraction.

MCP-1 Monocyte chemoattractant protein-1.

M-CSF Macrophage colony stimulating factor.

MI Myocardial infarction

MMP Matrix metalloproteinases.

MPO Myeloperoxidase..

MRI Magnetic resonance imaging.

MVD Multivessel disease.

NF-KB Nuclear factor-kappa B.

NICP Non ischemic chest pain.

NO Nitric oxide.

NPV Negative predictive value.

NS Nonsignificant.

NSTEMI Non ST elevation myocardial infarction.

PAD Peripheral arterial disease.

PET Positron emission tomography.

PPV Positive predictive value.

Pro MBP Proform of major basic protein.

P-value Probability value (Probability of chance)

(significance)

PVD Peripheral vascular disease.

ROC curve Reproducer operator characteristic curve.

SD Standard deviation

SD Standard deviation.

STEMI ST elevation myocardial infarction.

SVD Single vessel disease.

TEE Transoesophageal echocardiography.

THR Target heart rate.

TIMPs Tissue inhibitor of metalloproteinases.

TnT Troponin T.

UA Unstable angina

Vs Versus

Introduction & Aim of The Work

Introduction

The term vulnerable patient has been proposed to define subjects susceptible to an acute coronary event based on plaque characteristics, blood abnormalities or myocardial vulnerability (Naghavi et al.,2003). It is important to identify both vulnerable patients & vulnerable plaques. Atherosclerotic arteries obtained at autopsy from patients who died suddenly of cardiac causes indicate that Pregnancy Assosciated Plasma Protein-A (PAPP-A) was abundantly expressed in plaque cells&in extracellular matrix of ruptured &eroded plaques, but not in stable plaques (Bayes-Genis et al.,2001).

Pregnancy Assosciated Plasma Protein (PAPP-A) is a zincbinding matrix metalloproteinase, a member of metzincin superfamily which was originally identified in serum of pregnant women to help determine term date (*Libby*, 2002). It is also used for screening of fetal trisomy in the first pregnancy trimester (*Bayes-Genis et al.*, 2001).

There is growing evidence suggesting that inflammation has a pivotal role in acute coronary syndromes (*Ross, 1999*). PAPP-A,probably participates in the inflammatory reactions of vascular walls, which could lead to structural