Combination of alpha-1-acid glycoprotein and Alpha-fetoprotein as an improved diagnostic tool for hepatocellular carcinoma

Thesis Submitted for Partial Fulfillment of Master Degree in Internal Medicine

Presented by Moustafa Ahmed Hassan M.B.B.CH

Faculty of medicine - Ain Shams University

Supervisors

Prof. Dr. Samir AbdElHamid Ghait

Professor of internal medicine Faculty of Medicine, Ain Shams University

Dr. Ghada Amer Farghaly

Assistant Professor of internal medicine Faculty of Medicine, Ain Shams University

Dr. George Safwat Riad

Lecturer of internal medicine Faculty of Medicine, Ain Shams University

> Faculty of medicine Ain Shams University 2011

الجمع بين ألفا- ١ -أسيد جليكو بروتين وألفا-فيتوبروتين، لتشخيص افضل لسرطان الكبد الاولي رسالة

توطئة للحصول على درجة الماجيستير في الباطنة العامة

مقدمة من الطبيب / مصطفى احمد حسن.

المشرفين الدكتور / سمير عبد الحميد غيط أستاذ الدكتور الباطنة العامة أستاذ الباطنة عين شمس كلية الطب ، جامعة عين شمس

الدكتور / غادة عامر فرغلي أستاذ مساعد الباطنة العامة كلية الطب ، جامعة عين شمس

دكتور / جورج صفوت رياض مدرس الباطنة العامة كلية الطب ، جامعة عين شمس.

> كلية الطب جامعة عين شمس ٢٠١١

Summary

Hepatocellular carcinoma (HCC) is one of the commonest cancers worldwide. It is a major health problem and its incidence is increasing. The presence of cirrhosis of the liver is the major risk factor and worldwide this is largely due to chronic hepatitis C virus (HCV) and hepatitis B virus (HBV) infection. The diagnostic modalities, especially with respect to hepatic imaging, have improved in recent years. This, along with HCC surveillance in patients with cirrhosis, has led to the detection of HCC at an earlier stage, when curative therapy is likely to be more successful. The major diagnostic techniques for HCC include serum markers, various imaging modalities and histological analysis (Gomaa et al., 2009). According to recent reports, the incidence of HCC has increased sharply in the last 5–10 years, with an especially high incidence in Egypt (Anwar et al., 2008).

The main goal of our study was to evaluate the role of AAG in the diagnosis of HCC in combination with alphafetoprotein which is the most widely used tumor marker for diagnosis as well as surveillance of HCC.

The study was performed on 40 patients recruited from the Internal Medicine & Hepatology Department, Ain Shams University Hospitals. Patients were classified into 2 groups; **Group I** consisted of 20 HCC patients, their ages are

All praise be to Allah and all thanks. Allah has guided and enabled me by His mercy to fulfill this thesis, which I hope to be beneficial for people.

I would like to express my deepest gratitude and sincere appreciation to Prof. Dr. Samir Abd Elhamid Git, Professor of Internal Medicine, Faculty of Medicine, Ain Shams University for his continuous encouragement, his kind support and appreciated suggestions that guided me to accomplish this work.

I am also grateful to Dr. Ghada Amer Farghaly, Assistant Professor of Internal Medicine, Faculty of Medicine, Ain Shams University who freely gave her time, effort and experience along with continuous guidance through out this work.

Special thanks are extended to Dr.George Safwat Riad, Lecturer of Internal Medicine, Faculty of Medicine, Ain Shams University for his constant encouragement and advice whenever needed.

I am sincerely grateful to all patients who are participated in this research work hoping for them and for all Hepatic patients better care and Health.

I am deeply indebted for my mother for her support, patience and encouragement.

Moustafa Ahmed Hassan

List of Contents

Introduction1
Aim of the work3
Review of literature:
Chapter (1): Epidemiology4
Chapter (2): Pathology17
Chapter (3): Diagnosis and surveillance22
Chapter (4): Staging42
Chapter (5): Treatment58
Chapter (6): Prevention78
Chapter (7): Alpha fetoprotein101
Chapter (8): Alpha-1-acid glycoprotein105
Patients and Methods108
Results118
Discussion148
Summary165
Conclusion
Recommendations169
References
Master Sheet224
Arabic Summary

Abbreviations

AAG	Alpha 1 acid Glycoprotein
	American Association for the study of the liver
AASLD	disease
AFB-FABY	AFB1-formamido pyrimidine adduct
AIDS	Acquired immune deficiency syndrome
AFB1	Aflatoxin B1
AFP	Alpha-fetoprotein
AFPIC	Alpha-fetoprotein immunocomplexes
AFP L3	Lens culinaris agglutinin reactive alpha fetoprotein
AFU	Alpha-L-fucosidase
AJCC	The American Joint Committee of Cancer
AKT	(PKB) protein kinase B
ALT	Alanine transaminase
AUC	Area under curve
AST	Aspartate transaminase
BCLC System	The Barcelona-Clinic- Liver-Cancer system
CP	Child- pugh
CTP	Child –pugh -Turcotte
CECT	Contrast enhanced helical computed tomography
CEUS	Contrast enhanced ultrasound
CLD	Chronic liver disease
CLIP	The Cancer of the Liver Italian Program
CT	Computed tomography
CUPI	Chinese University Prognostic Index
CYP	Cytochrome P
DCP	Des-gamma carboxyprothrombin
DGCP	Des-gamma -carboxyprothrombin
DNA	Deoxyribonucleic acid
EASL	European association for the study of the liver
EDTA	Ethylenediaminetetraacetic acid
EGFR	Epidermal growth factor receptor
ELISA	Enzyme-linked immunosorbent assay
EPI	Expanded program of immunization
ESR	Erytrocyte sedimentation rate
FDA	Food and Drug Administration

	·
F-FDG	F-flurodeoxyglucose
FNAB	Fine needle aspiration biopsy
HA	Hepatic artery
HBIG	Hepatitis B immunoglobulin
HBV	Hepatitis B virus
HBsAG	Hepatitis B surface anrigen
HBeAG	Hepatitis B e anrigen
HCC	Hepatocellular carcinoma
HCV	Hepatitis C virus
HFL	Hepatic focal lesion
НН	Heriditary Haemochromatosis
HE	Hepatic encephalopathy
HIV	Human immune deficiency syndrome
HIFU	High intensity focused ultrasound
HMG CoA	Hydroxy methyl glutaryl coenzyme A reductase
reductase	Trydroxy metnyr glutaryr coenzyme A reductase
HMRS	Proton Magnetic Resonance Spectroscopy
ICG	Indocyanine Green
ICG R15(%)	Indocyanine Green retention rate at 15 minutes
IGF	Insulin like growth factor
IQR	Interquartile range
IFN	Interferon
IRS-1	Intracellular receptor substrate - 1
ITRAQ	sobaric tags for relative and absolute quantitation
INR	International normalized ratio
JIS Score	The Japan Integrated Staging score
KEAP1	Kelch-like ECH-associated protein 1
LCSGJ	The Liver Cancer Study Group of Japan
LDH	Lactate dehydrogenase
LT	Liver Transplantation
MAF	Macrophage activating factor
MDCT	Multidetector helical CT
MELD	The Model for End Stage Liver Disease
mJIS	The modified Japan Integrated Staging
mTOR	Mammalian targeted of rapamycin
MPCT	Multiphasic helical CT
MRI	Magnetic resonance imaging

NASH	Nonalcoholic steatohepatitis
NAFLD	Non alcoholic fatty liver disease
NPV	Negative predictive value
NRV	Nuclear receptor factor
OLT	Orthotopic liver transplantation
OS	Overall survival
PAT	Parenteral anti-schistosomal treatment
PBC	Primary biliary cirrhosis
PC	Prothrompin concentration
PI3K	Phosphatidyl inositol-3-kinase
PIVKA-II	Protein induced by vitamin K absence or
PIVKA-II	antagonist II
РАНО	Pan American Health Organization
PET	Positron emission tomography
PPV	Positive predictive value
PS	Performance status score
PSC	Primary sclerosing Cholangitis
Ras	Rat Sarcoma
RCT	Randomized Controlled Trial
ROC	The receiver operating characteristic curve
SD	Standard Deviation
SELDI-TOF	Surface-enhanced laser desorption/ionization-time
SELDI-TOF	of flight mass spectrometry
SLiDe	S : stage - Li : liver damage – De : des-γ-carboxy
	prothrombin
TNM Staging	Tumor, Node and Metastases Staging System
System	
TPO	Human thrompoietin
UNOS	United Network of Organ Sharing
US	Ultrasonography
VEGF	Vascular endothelial growth factor
VEGFR	Vascular endothelial growth factor receptor
VSV	Vesicular Stomatitis virus
WHO	World Health Organization

List of Figures

Figure (I):	HCC. B-mode US demonstrates a heterogeneous hypoechoic solid liver lesion (arrow) in segment IV, confirmed to be HCC3	30
Figure (II):	Hepatocellular carcinoma (HCC). (a) Arterial phase CT (b) Portal venous phase CT	33
Figure (III):	HCC with many typical MRI features	35
Figure (IV):	Detection of HCC with 18F-FDG PET/CT and 11Cacetate PET/CT on transaxial sections of liver and chest	37
Figure (V):	Lack of 18F-FDG-PET for HCC	38
Figure (VI):	Strategy for staging and treatment assignment in patients diagnosed with HCC according to the BCLC proposal	57
Figure (VII):	Multi-pronged Quadrafuse needle. Photo showing the 18G needle with tynes retracted	52
Figure (VIII):	Multi-pronged Quadrafuse needle. Photo showing the tynes fully extended	53
Figure (IX):	Multi-pronged needle. Photo showing set-up of the needle ready for injection	53
Figure (X):	Complete necrosis (100%). 65-year old man with hepatocellular carcinoma in segment 6	54
Figure (XI):	Complete necrosis (100%). 65-year old man with hepatocellular carcinoma in segment 6. Arterial phase of repeat triphasic CT scan 2 – weeks post alcohol injection showing complete necrosis of the lesion with no arterial enhancement during the arterial phase	54
Figure (XII):	Near complete necrosis (90% - 99%). 56-year old man with 8 cm hepatocellular carcinoma in segment 8 of the liver	55

Figure (XIII): MRI-guided Laser and Focused ultrasound ablation
Figures of	Results
Figure (1):	Age variation between HCC and chronic liver disease group
Figure (2):	Sex variation between HCC and chronic liver disease group
Figure (3):	Residence variation between HCC and chronic liver disease group
Figure (4):	Social habits of medical importance in both groups
Figures (5):	Work variations in HCC group and chronic liver disease group
Figure (6):	Medical history of studied groups122
Figure (7):	Shows relation between child scores and both groups
Figures (8):	ESR Level in HCC group and chronic liver disease group
Figure (9):	Relation between AAG & versus HE among HCC group
Figure (10):	Relation between AFP versus HE among HCC group
	Relation between AAG versus HE among chronic liver disease
Figure (12):	Relation between AFP versus HE among chronic liver disease
Figure (13):	Relation between AAG versus CT scan among chronic Liver disease group

Figure (14):	Relation between AFP versus CT scan among chronic Liver disease group
Figure (15):	Number of hepatic focal lesions in HCC group140
Figure (15):	Site of hepatic Focal lesions in HCC group140
Figure (17):	Echogenecity of the hepatic focal lesions in HCC group
Figure (18):	Size of largest HFL in HCC group141
Figure (19):	Triphasic Abdominal CT of HCC patients enhancement
Figure (20):	AAG level in HCC and chronic liver disease group144
Figure (21):	AAG level in HCC and chronic liver disease group
Figure (22):	ROC curve of AAG and AFP in HCC patients 145
Figure (23):	ROC curve of AAG and AFP in low AFP HCC patients (<200)
Figure (24):	ROC curve of AAG and AFP in high AFP HCC patients (>200)

List of Tables

Table (I):	EASL consensus diagnostic criteria for HCC3	9
Table (II):	AASLD diagnostic criteria for HCC	9
Table (III):	AJCC TNM Staging4	4
Table (IV):	UNOS TNM Staging	-5
Table (V):	Okuda Staging System4	-6
Table (VI):	Child-Pugh Score	-8
Table (VII):	CLIP Score4	.9
Table (VIII):	Japan Integrated Staging Score5	1
Table (IX):	Liver damage grade5	1
Table (X):	Modified Japan Integrated Staging5	2
Table (XI):	SLiDe Classification	2
Table (XII):	French classification	3
Table (XIII):	Definitions of CUPI score5	4
Table (XIV):	BCLC practical staging of HCC5	6
Table (XV):	Overall results of alcohol injection and according to hepatomas size	52
Tables of I	<u>Results</u>	
Table (1): I	Demographic features of the studied groups11	8
Table (2): N	Medical history of studied groups12	22
Table (3): (Clinical picture of the patient groups12	23

Table (4):	Distribution of HCC group as regard laboratory data
Table (5):	Distribution of chronic liver disease group as regard laboratory data
Table (6):	Comparison between both studied groups as regard laboratory data
Table (7):	Comparison between both studied groups as regard hepatic encephalopathy & ascites127
Table (8):	Comparison between both studied groups as regard Child classification
Table (9):	Correlation between AAG &AFP versus laboratory data and age among HCC group129
Table (10):	Correlation between AAG &AFP versus laboratory data and age among chronic liver disease group
Table (11):	Correlation between AAG versus AFP in low AFP HCC (<200)
Table (12):	Correlation between AAG versus AFP in high AFP HCC (>200)
Table (13):	Relation between AAG &AFP versus HE among HCC group
Table (14):	Relation between AAG &AFP versus HE among chronic liver disease
Table (15):	Relation between AAG &AFP versus CT scan among chronic liver disease group
Table (16):	Abdominal ultrasonographic findings of the patient groups

Table (17):	Triphasic Abdominal CT of HCC patients142
Table (18):	Comparison between both studied groups as regard AAG and AFP
Table (19):	Validity of AAG &AFP in diagnosis of HCC145
Table (20):	Validity of AAG &AFP in diagnosis of low AFP HCC (<200)
Table (21):	Validity of AAG &AFP in diagnosis of high AFP HCC(>200)

Introduction

Globally, hepatocellular carcinoma (HCC) is one of the leading causes of cancer related deaths, and is the fifth most commonly diagnosed solid tumor. The majority of HCC patients occur in sub-Saharan Africa and parts of South East Asia; however, incidence rates appear to be on the rise in developed nations such as the United States, Japan and Western Europe. The lack of HCC biomarkers prevents early detection resulting in a poor prognosis of the disease (*Stefaniuk et al.*, 2010).

In Egypt the incidence of HCC has doubled in the last ten years, and it is now the second most incident and lethal cancer in men. The heavy burden of HCC parallels high rates of hepatitis C virus (HCV) while hepatitis B virus (HBV) rates have declined after the introduction of the vaccine in 1992 Nevertheless, the age standardized HBV incidence rate in males (20.6/100, 000) is seven times higher than what is found in the Middle East Cancer Consortium, and more than three times the incidence rates (*Asmis et al.*, 2010).

Prognosis and survival of patients with HCC is heavily affected by the disease stage at the time of diagnosis. The availability of reliable markers would greatly improve the chances of detecting early stage HCC. Imaging modalities, such as ultrasonography, are currently limited by their low positive