Assessment of Endothelial Dysfunction In Idiopathic Pulmonary Fibrosis

Thesis

Submitted for the Fulfillment of Master Degree
In Chest Diseases & Tuberculosis

PRESENTED BY

Noha Hassan okasha

M.B., B.ch. Faculty of medicine

Cairo University

SUPERVISORS

prof. Mostafa Ibrahim Elshazly

Professor of Chest Diseases Faculty of Medicine Cairo University

prof. Hossam Hosny Masoad

Professor of Chest Diseases
Faculty of Medicine
Cairo University

Dr. Abir Zakaria Mohamed

Assistant Professor of internal medicine Faculty of Medicine Cairo University

> Faculty of Medicine Cairo University 2012

Acknowledgements

First of all, thanks to "Allah" who enabled me to finish this piece of work appropriately

I would like to extent this work to my father, my beloved mother and my supportive husband for thier daily support and doa'a.

I would like to express my respect and gratitude to the eminent **Prof. Mostafa Ibrahim ELshazly**, Professor of Chest Diseases, Faculty of Medicine, Cairo University, for his continuous support, valuable time and guidance throughout this work. It is a great honor and a chance of lifetime to be supervised by him, the knowledgeable scientist for whom no words of praise are sufficient.

I am also offering my warmest thanks to **Prof. Hossam**Hosny Masoad, Professor of Chest Diseases, Faculty of Medicine, Cairo University, for his positive attitude, encouragement, continuous support and substantial supervision of this work.

I would like to express my endless gratitude and appreciation to **Dr. Abir Zakaria Mohamed**, Assistant Professor of Internal Medicine, Faculty of Medicine, Cairo University for her continuous guidance and encouragement.

My deep thanks to **Dr. Khaled Elkaffas**, Assistant Professor of Radiology, Faculty of Medicine, Cairo University for his aid and precious remarks.

I would like to express my thanks & appreciation to **Dr**. **Hamed AbdELhafeez**, Lecturer of Chest Diseases, Faculty of Medicine, Cairo University for his kind help and assistance in the practical part of this work.

I would also like to express my warm feelings to all the staff members of chest department, Faculty of Medicine, Cairo University for their continuous encouragement.

Noha Hassan Okasha

CONTENTS	Page
Introduction	1
Aim of the Work	3
Abstract	
Review of Literature	
Chapter (1): Idiopathic Pulmonary Fibrosis	
Definition and risk factors of Idiopathic pulmonary fibrosis	4- 5
Pathogenesis of Idiopathic Pulmonary Fibrosis	8
Pathophysiology of Idiopathic Pulmonary Fibrosis	23
Diagnosis of Idiopathic Pulmonary Fibrosis	30
Complications and prognosis of Idiopathic Pulmonary Treatment of Idiopathic Pulmonary Fibrosis	40-42 43
Chapter (2): Endothelial Dysfunction Mechanisms of Blood Vessel Formation	56
	59-60
Anatomy &Function of pulmonary endothelium Endothelium in pulmonary hypertension	61
Endothelium and inflammation	69
Endothelial Dysfunction and Hypercoagulability	71
Pulmonary Cell Apoptosis and Pulmonary Fibrosis	72 74
Chapter (3): Flow mediated dilatation for Investigating Endothelial Dysfunction	
Methods for the assessment of the endothelial function	75
Mechanisms of FMD	76
Subjects & Methods	80
Results	90
Discussion	103
Summary & Conclusions	116
Recommendations	121
References	123
Arabic Summary	

List of Tables

Tables	Review	Pages
1	Usual interstitial pneumonia HRCT scoring system.	33
2	ATS/ERS criteria for diagnosis of IPF in absence of surgical lung	38
3	biopsy. Treatment recommendations for IPF.	54
4	Assessing response to therapy.	54
	Results	
1	Sex distribution among the study groups.	91
2	Demographic data in the study groups.	92
3	Smoking prevalence among the study groups.	93
4	Statistical comparison of ABG parameters between subgroup I and subgroup II.	94
5	Statistical comparison of PFTs parameters between the subgroup I and subgroup II.	95
6	Statistical comparison of 6MWD between subgroup I and subgroup II.	96
7	Statistical comparison of BAD_{basal} between the target population and control group.	97
8	Statistical comparison of BAD_{FMD} between the target population and control group.	98
9	Statistical comparison of Baseline ERD between the target population and control group.	99
10	Correlation between EPSP and brachial artery diameter BAD _{basal} , BAD _{FMD} &ERD among patients with IPF.	100
11	Correlation between brachial artery diameter BAD _{basal} and	100
	BAD _{FMD} among patients with IPF.	
12	Correlation between ERD and brachial artery diameter BAD _{basal}	101
13	and BAD _{FMD} among patients with IPF.	
1.4	Statistical comparison of BAD _{basal} between study groups.	101
14	Statistical comparison of BAD _{FMD} between study groups.	102
15	Statistical comparison of ERD between study groups.	102

List of Figures

Figure	Review	Pages
1	The Interrelationship of angiogenic and angiostatic chemokines with other factors in the regulation of angiogenesis/vascular remodeling that is important to chronic fibroproliferative disorders.	13
2	The angiogenesis: cascade of events.	15
3	Overview of some of the key pathogenetic mechanisms in UIP/IPF.	22
4	High-resolution computed tomography (HRCT) images demonstrating usual interstitial pneumonia (UIP) pattern and possible UIP pattern.	32
5	The endothelium and vasodilator/antiproliferative pathways.	66
6	Mechanistic role of endothelial dysfunction in PH and pulmonary vascular remodeling.	70
7	The genesis of FMD in response to different changes in shear stress.	79
	Subject and Method	
8	The image shows the experimental set-up for assessing flow-mediated dilation of the brachial artery.	85
9	Determination of flow-mediated dilation and reactive hyperemia by brachial artery ultrasound.	87
10	The Representative flow-mediated response of brachial artery (forearm occlusion).	88
	Results	
1	Bar char representing sex prevalence in IPF patients in comparison with controls.	91
2	Bar char representing sex prevalence in the study groups.	91
3	Bar char representing prevalence of Smoking in the study groups.	93
4	Bar char representing a Comparison between subgroup 1 and subgroup 2 as regard mean value of $PaO_2 \& SaO_2$.	94
5	Bar char representing a Comparison between subgroup 1 and subgroup 2 as regard mean value of FVC & FVC/FEV1.	95
6	Bar char representing a Comparison between subgroup 1 and subgroup 2 as regard mean value of 6MWD.	96
7	Bar char representing a Comparison between study groups as regard mean value of BAD_{basal} .	97
8	Bar char representing a Comparison between study groups as regard mean value of BAD_{FMD} .	98

List of Abbreviations

5-LO 5 Lipoxygenase

FLAP 5 Lipoxygenase activating protein

α-Pl Alpha-1 proteinase inhibitor

6MWD 6 minutes walk distance

6MWT 6 minutes walk test

ABG Arterial blood gases

ACEI Angiotensin converting enzyme inhibitors

AECs Alveolar epithelial cells

AIP Acute interstitial pneumonia

ALK Activin- like kinase

Latin American Thoracic Association Statement

AM Adrenomedullin

AMP Adenosine monophosphaste

AP-1 Activated protein-1

ARDS Acute Respiratory Distress Syndrome

AT II Alveolar type II cells

ATP Adenosine Triphosphate

ATS American Thoracic Society

AZA Azathioprine

BAD brachial artery diameter

BAD_{basal} brachial artery diameter at rest

BAD_{FMD} brachial artery diameter follow mediated dilatation

BAL Bronchoalveolar lavage

bFGF basic fibroblast growth factor

BH4 Tetrahydrobiopterin	
-------------------------	--

Bone morphogenic protein receptor - 2

Cyclic AMP Cyclic adenosine monophosphate

Cyclic GMP cyclic guanosine monophosphate

CD Cluster of differentiation

CMV Cytomegalovirus

CO2 Carbone Dioxide

CP Cyclophosphamide

CPET Cardiopulmonary exercise testing

CT Computed tomography

CTGF Connective tissue growth factor

CXC Chemokines

CXCL Chemokine linked

CXCR Chemokine receptor

DAD Diffuse alveolar damage.

DBL baseline diameter of brachial artery

Dend diameter change of brachial artery at the end of the post

cuff deflation period

Desquamative interstitial pneumonia

DLCO Diffusing capacity for carbon monoxide

DLCO/VA Diffusing capacity for carbon monoxide corrected to the

alveolar volume

Dmax maximum diameter of brachial artery after cuff release.

Deoxy ribonucleic acid

DPLD Diffuse parenchymal lung diseases

DTPA 99Tc-diethylenetriamine penta acetate

EBV Epstein Barr virus

ECs	Endothelial Cell
-----	------------------

ECM Extracellular matrix

EDHF Endothelium-derived hyperpolarizing factor

EF Endothelial function

ELF Epithelial lining fluid

ENA-78 Epithelial neutrophil activating protein-78

eNOS Endothelial NO synthase

EPAP Estimated pulmonary artery pressure

ERD Endothelial reactive dilatation

ERS European Respiratory Society

ET-1 Endothelin-1

ETA Endothelin receptor A

Endothelin receptor B

FEF Forced expiratory flow

FEV1 Forced expiratory volume in 1st second

FF Fibroblastic foci

FGF Fibroblast growth factor

Flow-mediated vasodilatation

Familial pulmonary fibrosis

FRC Functional residual capacity

FS Fibrosis score

FVC Forced Vital Capacity

Gamma-GCS Gamma glutamyl cysteine synthetase

GCP Granulocyte chemotactic protein

GERD Gastroesophageal reflux disease

GGO Ground glass opacity

GGS	Ground glass score
-----	--------------------

GM-CSF Granulocyte monocyte colony stimulating factor

GMP Guanosine monophosphate

GROs Growth related genes

GTP Guanosine Triphosphate

H hour(s)

HB-EGF Heparin binding EGF

HC Honeycombing

HCV Hepatitis C virus

HGF Hepatocyte growth factor

HIF Hypoxia inducible factor

Human immunodeficiency virus

HRCT High resolution computed tomography

hTERT Telomerase reverse transcriptase

Intercellular adhesion molecule

Inhibitor of differentiation 1

IIPs Idiopathic interstitial pneumonias

ILs Interleukins

ILD Interstitial lung diseases

INF Interferon

IP-10 Interferon gamma inducible protein 10

IPAH Idiopathic pulmonary arterial hypertension

IPF Idiopathic pulmonary fibrosis

IFN-γ-inducible T-cell a chemoattractant

Japanese Respiratory Society

Kg Kilogram

calcium-activated potassium channel

Leane body weight

Laser Doppler Imaging	LDI	Laser Doppler	'Imaging
-----------------------	-----	---------------	----------

LTs Leukotrienes

m meter

mm millimeter

MCP-1 Monocyte chemoattractant protein-1

Mg milligram

MHz Mega hertz

MIG Monokine induced by IFN-γ

Min minute (s)

MIP Macrophage inflammatory protein

mm Hg millimeters of mercury pressure

MMPs Matrix Metalloproteinases

MMRC Modified Medical Research Council

mPAP Mean pulmonary arterial pressure

NAP-2 Neutrophil activating protein-2

NF-κB Nuclear factor kappa B

(NK) cells Natural killer Cells

NO Nitric oxide

NSIP Nonspecific interstitial pneumonia

O2 Oxygen

OSA Obstructive sleep apnea

alpha-proteinase inhibitor

P(A-a) O₂ Alveolar arterial oxygen difference

P2 Pulmonary component of second heart sound

PaCO₂ Partial pressure of arterial carbon dioxide

PAD Peripheral artery disease.

PAH Pulmonary arterial hypertension

PAECs pulmonary artery Ecs

PAI	Plasminogen activator inhibitor
PaO ₂	Partial pressure of arterial oxygen
PASP	Pulmonary artery systolic pressure
PCWP	Pulmonary Capillary Wedge Pressure
PDEI	Phosphodiesterase inhibitor
PDGF	Platelet derived growth factor
PEDF	Pigment epithelium-derived factor
PET	Positron emission tomography
PF	Platelet factor
PFTs	Pulmonary function tests
PGs	Prostaglandins
PH	Pulmonary hypertension
PMNs	Polymorph nuclear neutrophils
PPH	Primary Pulmonary hypertension
P-value	Probability value
PVR	Pulmonary vascular resistance
REM	Rapid eye movement
RONS	Reactive Oxygen and Nitrogen Species
ROS	Reactive oxygen species
RPM	Rapamycin
RV	Residual volume
RVSP	Right ventricular systolic pressure
S	Second(s)
S3	Third heart sound
SaO ₂	Arterial oxygen saturation
SLPI	Secretory leukoprotease inhibitor
SMCs	Smooth Muscles

SP	Surfactant protein
	•
SPAP	Systolic pulmonary artery pressure
TBLB	Transbronchial lung biopsy
TDI	Tissue Doppler imaging.
TGF	Transforming growth factor
Th-1	T-helper cell type 1 lymphocytes
Th-2	T-helper cell type 2 lymphocytes
TIMPs	Tissue inhibitors of matrix metalloproteinases
TLC	Total lung capacity
TNF-α	Tumor necrosis factor alpha
TTE	Transthoracic echocardiography
UIP	Usual interstitial pneumonia
V [·] max	The maximal expiratory flow rate
V/Q	Ventilation perfusion ratio
V _A	Alveolar volume
VC	Vital Capasity
V D	Dead space volume
VEGF	Vascular endothelial growth factor
VIP	Vasoactive intestinal peptide
VOP	Venous Occlusion Plethysmography
VT	Tidal volume
VSMCs	vascular smooth muscle cells
vWF	von Willebrand factor
XOR	Xanthine oxidoreductase

Abstract

Background: IPF is defined as a specific form of chronic fibrosing interstitial pneumonia limited to the lung, with the histopathology of UIP on surgical lung biopsy. Pulmonary hypertension (PH) is frequently seen in patients with IPF and is commonly attributed to hypoxic vasoconstriction and capillary destruction. Pathology findings include endothelial proliferation and medial hypertrophy that exceed those expected in the setting of hypoxia. PH in patients with IPF is associated with decreased exercise capacity and worse survival (Patel et al., 2007). The endothelium of the bronchial circulation shares characteristic features of other systemic vascular beds. Namely, leukocyte recruitment and vascular leak occur at postcapillary sites, and there is a vigorous angiogenesis response to tissue ischemia. This is in direct contrast to the pulmonary vasculature. both bronchial endothelium and pulmonary endothelium are exposed to mechanical stress imposed by lung ventilation (Wagner, 2009). Together these findings support the notions that under ischemic and/or hypoxic conditions, ELR⁺ CXC chemokines are involved in promoting angiogenesis in the lung and that both the bronchial and pulmonary circulations of the lung are important in promoting vascular remodeling (Strieter et al., 2007).

Aim of the work: to assess the prevalence of endothelial dysfunction in patients with Idiopathic Pulmonary Fibrosis and its correlation with pulmonary hypertension.

Subjects and methods: the study included two groups; target population and control group. The target population subdivided in to 2 subgroups included 30 IPF patients: Subgroup I (15 IPF cases) with pulmonary artery hypertension; Subgroup II (15 IPF cases) without pulmonary artery hypertension. The control group included 10 normal healthy individuals. They were subjected to written informed consent, demographic data acquisition, detailed history taking, thorough clinical examination, collagen profile, ABG (PaO₂, SaO₂₎, PFTs (spirometry), 6MWT, HRCT chest scan, echocardiography, and brachial artery duplex to assess endothelial dysfunction.

Results: Subgroup (I) & Subgroup (II) showed a statistically highly significant difference in BAD_{FMD} and ERD compared to the control group. Whereas, BAD_{basal} , BAD_{FMD} and ERD were affected in both Subgroup (I) and Subgroup (II), But with no statistically significant difference. EPSP was correlating indirectly with BAD_{basal} and BAD_{FMD} whereas EPSP was correlating directly with ERD, but these relations were found to be statistically insignificant.

Conclusion: This work concluded that BAD_{FMD} &ERD more affected in IPF patients regardless PAH presence or absence than normal population.

Key words: IPF, brachial artery flow mediated dilatation, estimated pulmonary artery systolic pressure, ERD.