Value of the aVL lead in the electrocardiographic diagnosis of Atrioventricular Node Re-entrant Tachycardia (AVNRT)

Thesis

Submitted for partial fulfillment of master degree in **Cardiology**

By Amr Fouad Barakat

M.B.B.Ch.

Under Supervision of **Prof. Dr./ Wagdy Abdel Hamid Galal**

Professor of Cardiology-Cardiology department Faculty of Medicine – Ain Shams University

Dr./ Ayman Mortada Abdel Motteleb

Lecturer of Cardiology-Cardiology department Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2011

أهمية اتجاه رسم القلب AVL في تشخيص التسارع فوق البطيني الدائر حول العقدة الأذينية البطينية

رسالة

توطئة للحصول على درجة الماجستير في أمراض القلب و الأوعية الدموية

مقدمة من

الطبيب/ عمر و فؤاد بركات بكالوريوس الطب و الجراحة العامة

تحت إشراف الأستاذ الدكتور /وجدي عبد الحميد جلال أستاذ القلب و الأوعية الدموية - جامعة عين شمس

الدكتور / أيمن مرتضى عبد المطلب مدرس القلب و الأوعية الدموية - جامعة عين شمس

كلية الطب جامعة عين شمس ٢٠١١

Contents

List of tables	
List of figures	
Introduction	1
Aim of the work	4
Review of literature	
Supraventricular tachyarrhythmias	5
 Different methods to differentiate between AVNRT and AVRT 	27
Patients and methods	57
Results	65
Discussion	103
Conclusions	113
Recommendations	114
Summary	115
References	118
Appendix	
Arabic summary	

List of Tables

	Page No.
Table (1):	Represents effect of ATP injection during sinus rhythm
Table (2):	No. of types of supraventricular tachycardia among the study population
Table (3):	Distribution of age among the study population69
Table (4):	Distribution of sex among the study population 70
Table (5):	Heart rate in different types of supraventricular tachycardia among the study population72
Table (6):	Site of accessory pathway in patients with AVRT among the study population
Table (7):	aVL notch in different types of SVT74
Table (8):	Correlation of aVL notch with age in the study population
Table (9):	Correlation of aVL notch with HR of tachycardia in the study population76
Table (10):	Correlation of aVL notch with sex in the study population
Table (11):	aVL notch in different types of SVT among female patients
Table (12):	aVL notch in different types of SVT among male patients
Table (13):	Gender difference in the utility of aVL notch in the electrocardiographic diagnosis of AVNRT81
Table (14):	Pseudo-R' in lead V1 in different types of SVT83
Table (15):	Pseudo-R' in different types of SVT among female patients
	Pseudo-R' in different types of SVT among male patients

Table (17):	Gender difference in the utility of pseudo-R' in the electrocardiographic diagnosis of AVNRT	86
Table (18):	Pseudo-S in inferior leads in different types of SVT	87
Table (19):	Pseudo-S in different types of SVT among female patients	89
Table (20):	Pseudo-S in different types of SVT among male patients.	90
Table (21):	Gender difference in the utility of pseudo-S in the electrocardiographic diagnosis of AVNRT	90
Table (22):	Utility of aVL notch in comparison with the standard criteria in diagnosis of patients with AVNRT	92
Table (23):	Utility of aVL notch in comparison with the standard criteria in diagnosis of male patients with AVNRT	92
Table (24):	Utility of aVL notch in comparison with the standard criteria in diagnosis of female patients with AVNRT	93
Table (25):	ST elevation in lead aVR in different types of SVT	94
Table (26):	ST depression / T wave inversion in different types of SVT.	96
Table (27):	QRS alternans in different types of SVT	98
	Cycle length alternans in different types of SVT	
Table (29):	Visible retrograde P waves in different types of SVT	102
Table (30):	Summarizes the most important statistically significant data regarding different criteria in the electrocardiographic differentiation between AVNRT and AVRT in the study population	104

List of Figures

	Page No.
Figure (1):	Diagram showing mechanism of initiation of AVNRT
Figure (2):	Surface ECG (monitor lead) during AVNRT and schematic representation of tachycardia circuits22
Figure (3):	Schematic representation of AVNRT and AVRT26
Figure (4):	Pseudo-R' wave in V1 during tachycardia which is not present during sinus rhythm30
Figure (5):	Pseudo-S wave in lead II during tachycardia and disappearance of this deflection with restoration of sinus rhythm
Figure (6):	QRS alternans, defined as beat-to-beat oscillation in QRS amplitude > 1mm in at least one lead.12 lead ECG with horizontal ST-segment depressions persisting 80 ms beyond J point during SVT
Figure (7):	Algorithm for differentiation of typical AVNRT from AVRT by concealed accessory pathway proposed by Jaeggi et al
Figure (8):	12-lead ECG in a patient with typical AVNRT. In patients with no visible P wave or RP interval < 100 msec, the lack of ST-segment depression accurately predicted AVNRT as the mechanism of SVT
Figure (9):	An example of ECG algorithm put by Zhong et al., 2006 for differentiating AVNRT from AVRT39
Figure (10):	Three types of aVL notch (A) during atrioventricular node re-entrant (B) sinus rhythm40
Figure (11):	A patient with atrioventricular node re-entrant with notch in aVL lead without pseudo-R in V1 during atrioventricular node re-entrant
Figure (12):	During pacing, the end of the QRS in aVL lead

	lead appears after the atrioventricular node re- entrant induction	42
Figure (13) :	(A) A patient with a notch in aVL lead without pseudo-S-wave in the inferior leads during atrioventricular node re-entrant. (B) A patients with a notch in aVL lead without pseudo-R' in V1 and pseudo-S-wave in the inferior leads during atrioventricular node re-entrant.	43
Figure (14):	Schematic representation of the responses to Para-Hisian pacing. (The Para-Hisian catheter was positioned at anterobasal right ventricular septum 1-2 cm anterior and apical to His bundle catheter)	51
Figure (15):	Reveals the intervals measured during and after entrainment of tachycardia	54
Figure (16):	Surface ECG during tachycardia belonging to case no 5 of the current study showing aVL notch, pseudo-R' in V1 and visible retrograde P waves (evident in lead aVR).No aVR ST elevation or QRS alternans, favouring the diagnosis of AVNRT.	63
Figure (17):	Showing No. of types of supraventricular tachycardia among the study population	
Figure (18):	Sex distribution among the study population	71
Figure (19):	Site of accessory pathway in patients with AVRT among the study population.	73
Figure (20):	aVL notch in different types of SVT	75
Figure (21):	Correlation of aVL notch with sex in the study population	77
Figure (22):	aVL notch in different types of SVT in correlation with sex among the study population	81
Figure (23):	Pseudo-R' and pseudo-S among AVNRT patients with aVL notch	82
Figure (24):	Pseudo-R' in lead V1 in different types of SVT	83
Figure (25):	Pseudo-S in inferior leads in different types of SVT.	88

Figure (26):	ST elevation in lead aVR in different types of SVT	95
Figure (27):	ST depression / T wave inversion in different types of SVT.	97
Figure (28):	QRS alternans in different types of SVT	99
Figure (29):	Cycle length alternans in different types of SVT	101
Figure (30):	Visible retrograde P waves in different types of SVT.	103
Figure (31):	A case of AVNRT (surface ECG during tachycardia), notice the presence of aVL notch without pseudo-R' in lead V1 or pseudo-S in the inferior leads	III
Figure (32):	Intracardiac tracing of a case of AVNRT during tachycardia (same previous patient)	IV
Figure (33):	A case of AVRT (surface ECG during tachycardia), notice the absence of aVL notch	V
Figure (34):	Intracardiac tracing during tachycardia of a case of AVRT (same previous patient)	VI
Figure (35):	(Above): showing the systems used the EP labs: GE CardioLab v6.5 , (below):A fluoroscopic image showing a decapolar catheter in the coronary sinus and two quadripolar catheters, one in the His-bundle position and the other in the right ventricle.	VII

List of abbreviations

%	Percentage
AF	Atrial fibrillation
AH	Atrial to His
AP	Accessory pathway
AT	Atrial tachycardia
ATP	Adenosine triphosphate
AUC	Area under the curve
AV	atrioventricular
AVN	Atrioventricular node
AVNRT	Atrioventricular Nodal Re-entrant Tachycardia
AVRT	Atrioventricular Reciprocating Tachycardia
bpm	Beats per minute
CHF	Congestive heart failure
COPD	Chronic obstructive pulmonary disease
CS	Coronary sinus
DAD	Delayed after depolarization
DAVNP	Dual AV nodal pathology
ECG	Electrocardiogram
ERP	Effective refractory period
EP	Electrophysiology
EPS	Electrophysiological study
HBE	His-bundle electrogram
HR	Heart rate
HRA	High right atrium
HS	Highly significant
Hz	Hertz
LOSS-CAPT	Loss of capture
MAT	Multifocal atrial tachycardia
min	minimum
mm	Millimeter

msec	Millisecond
n	Number
NPV	Negative predictive value
NS	Non-significant
ORT	Orthodromic reciprocating tachycardia
p	Probability of chance
PAC	Premature atrial contraction
PH	Para-hisian
PI	Pre-excitation index
PPI	Post pacing interval
PPV	Positive predictive value
PSVT	Paroxysmal Supraventricular tachycardia
RB	Right bundle
RV	Right ventricle
SCL	Sinus cycle length
SD	Standard deviation
SVT	Supraventricular tachycardia
TCL	Tachycardia cycle length
vs.	Versus

Introduction

Supraventricular arrhythmias represent a common group of rhythm disturbances including rhythms emanating from the sinus node, atrial tissue (atrial flutter), junctional/reciprocating or accessory pathway-mediated tachycardia.¹

AV nodal re-entrant tachycardia (AVNRT) is the most common type of re-entrant supraventricular tachycardia (SVT). It involves an additional accessory pathway through the AV node that becomes a reentry circuit causing the tachycardia.² Although controversy still exists about the exact nature of the tachycardia circuit, abundant evidence has indicated that two pathways in the region of AV node participate, one with relatively fast conduction but long refractoriness and the other with shorter refractoriness but slower conduction. PACs can encounter refractoriness in the fast pathway, conduct down the slow pathway, and reenter the fast pathway retrogradely, initiating the AVNRT. Although this is the most common presentation of AVNRT, some patients have what appears to be propagation in the opposite direction in this circuit (antegrade fast, retrograde slow), as well as "slow-slow" variant. Two or more of these variants can exist in the same patient.

AV re-entrant tachycardia (AVRT) actually results from an accessory pathway (AP) of atrioventricular (AV) conduction

that may develop circus movement so as to cause tachycardia. Orthodromic AVRT is the most common form. It occurs as a result of antegrade conduction through the normal AV conduction system and retrograde conduction to the atria via the AP. Less commonly, conduction occurs in the opposite direction resulting in antidromic AVRT.

Therefore, reciprocating atrioventricular tachycardia can be categorized into common slow–fast atrioventricular node reentrant (AVNRT) and orthodromic atrioventricular reciprocating tachycardia (AVRT).³

The electrocardiogram (ECG) during tachycardia is useful in distinguishing these two mechanisms. Several studies examined the diagnosis utility of the ECG, and various algorithms were previously reported.⁴⁵

The presence of a pseudo-R'-wave in lead V1 or pseudo-S-wave in the inferior leads has been widely used, although the value of an isolated aVL lead to distinguish both mechanisms has not been thoroughly evaluated yet.

Previous studies have shown that only 80% of narrow QRS supraventricular tachycardia (SVT) types can be differentiated by standard 12-lead electrocardiographic (ECG) criteria.⁶

P waves separate from the QRS complex were observed more frequently in AVRT (70%) and atrial tachycardia (80%).

Pseudo-R' deflection in lead V1, pseudo S wave in inferior leads, and cycle length alternans were more common in AVNRT (55, 20, and 6%, respectively). QRS alternans was also present during AVRT (28%). ST-segment depression (> or = 2 mm) or T-wave inversion, or both, were present more often in AVRT (60%) than in AVNRT (27%). During sinus rhythm, manifest pre-excitation was observed more often in patients with AVRT (42%).

In another study, ST-segment elevation in lead aVR during tachycardia was used to differentiate the narrow QRS complex tachycardia. It appears that aVR ST-segment elevation during narrow QRS complex tachycardia favors the atrioventricular re-entry through an accessory pathway as the mechanism of the tachycardia.⁷

A study that was carried out in 2009 revealed that the aVL notch sensitivity and specificity to determine the final diagnosis was higher than the standard criteria (aVL notch 48.6 and 92.6%; pseudo-S-wave 45 and 91.3%; and pseudo-R'-wave in V1 39.7 and 88.5%, respectively), but it did not reach statistical significance.³

Catheter-based slow pathway modification has become a first line treatment of AVNRT with success rates approaching 100 percent.⁸

Predicting the mechanism involved in a supraventricular tachycardia before the beginning of the ablation procedure may help in planning the ablation in advance.³

Aim of the work

The purpose of this study is to determine whether an isolated aVL lead of the surface 12-lead ECG is useful for the differential diagnosis between AVNRT and AVRT.

Chapter One

Supraventricular tachyarrhythmias

I. Background.

Supraventricular tachycardia (SVT), a common clinical condition, is any tachyarrhythmia that requires only atrial and/or atrioventricular (AV) nodal tissue for its initiation and maintenance. It is usually a narrow-complex tachycardia that has a regular, rapid rhythm; exceptions include atrial fibrillation (AF) and multifocal atrial tachycardia (MAT). Aberrant conduction during SVT results in a wide-complex tachycardia. SVT occurs in persons of all age groups, and treatment can be challenging. ^{9 10}

Paroxysmal supraventricular tachycardia (PSVT) is episodic, with an abrupt onset and termination. Manifestations of SVT are quite variable; patients may be asymptomatic or they may present with minor palpitations or more severe symptoms.¹¹

II. Epidemiology:

Supraventricular arrhythmias are relatively common, often repetitive, occasionally persistent, and rarely life threatening.¹²

The precipitants of supraventricular arrhythmias vary with age, gender, and associated comorbidity.¹³