

Atherogenic Index of Plasma as a Predictor of Atherosclerosis in Hemodialysis Patients

Thesis

For Partial Fulfilment of Master Degree in Internal Medicine

Ву

Eman Magdy Abdellatif Hegazy

M.B., B. Ch, Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Dr. Osama Mahmoud Mohammad Kamal

Professor of Internal Medicine and Nephrology
Faculty of Medicine - Ain Shams University

Ass. Prof. Dr. Hussien Sayed Hussien

Assistant Professor of Internal Medicine and Nephrology
Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2018

Above and before all, I would like to kneel thank to **Allah** the all Mighty, the most Merciful for the support, guidance and mercy He grants me throughout my life.

I want to express my deepest gratitude to **Prof. Dr. Osama Mahmoud Mohammad Kamal**, Professor of Internal Medicine and Nephrology, Faculty of Medicine, Ain Shams University, for his positive attitude and support.

I want to express my grateful thanks to **Ass. Prof. Dr. Hussien Sayed Hussien,** Assistant Professor of Internal Medicine and Nephrology, Faculty of Medicine, Ain Shams University, for his kind guidance and support.

I can't find enough words to express how grateful I am to my Mother, my Father and my Husband. There is nothing I can offer them comparable to what they offered me.

Last but not least, I would like to express my sincere gratitude to one and all who, directly or indirectly, have lent their helping hand in this work.

Table of Contents

Subject	Page no.
List of Abbreviations	I
List of Tables	IV
List of Figures	V
Introduction	1
Aim of the work	6
Review of Literature	
➤ Chronic kidney disease	7
➤ Pathogenesis of atherosclerosis	16
➤ Atherosclerosis in Chronic kidney disease	39
Predictors of atherosclerosis	53
Atherogenic index of plasma	61
Patients and Methods	67
Results	78
Discussion	93
Summary and Conclusion	104
Recommendations	108
References	109
Arabic Summary	١

List of Abbreviations

Abb.	Full term
ACEIs	Angiotensin converting enzyme inhibitors
ACR	Albumin creatinine ratio
ADMA	Asymmetric dimethyl arginine
AIP	Atherogenic index of plasma
AKI	Acute kidney injury
Apo B	Apolipoprotein B
ApoA-1	Apolipoprotein A-1
ARBs	Angiotensin 2 receptor blockers
ARF	Acute renal failure
ASCVD	Atherosclerotic cardiovascular disease
BMI	Body mass index
BUN	Blood urea nitrogen
CAC	Coronary artery calcium
CAD	Coronary artery disease
СЕТР	Cholesteryl ester transfer protein
CHD	Coronary heart disease
CI	Confidence interval
CIMT	Carotid intima media thickness
CKD	Chronic kidney disease
CKD-EPI	Chronic Kidney Disease Epidemiology Collaboration
CKD-MBD	Chronic kidney disease – mineral bone disorder
CRP	C-reactive protein
CV	Cardiovascular

Abb.	Full term
CVD	Cardiovascular disease
DBP	Diastolic blood pressure
DM	Diabetes mellitus
eGFR	Estimated glomerular filtration rate
ELISA	Enzyme-linked immunosorbent assay
ESRD	End-stage renal disease
FGF-23	Fibroblast growth factor 23
GFR	Glomerular filtration rate
HD	Hemodialysis
HDL-C	High density lipoprotein cholesterol
hs-CRP	Serum high sensitivity C-reactive protein
ICAM	Intercellular adhesion molecule
IDL	Intermediate density lipoprotein
IL	Interleukin
IMT	Intima media thickness
iPTH	Intact parathyroid hormone serum level
IRS1	Insulin receptor substrate1
KDIGO	Kidney Disease, Improving Global Outcomes
KDOQI	Kidney Disease Outcomes Quality Initiative
LCAT	Lecithin cholesterol acyltransferase
LDL-c	Low density lipoprotein cholesterol
LDL-p	Low density lipoprotein particle
Lp(a)	Lipoprotein (a)
LPL	Lipoprotein lipase
Lp-PLA2	Lipoprotein-associated phospholipase A ₂

Abb.	Full term
LRP	Low density lipoprotein receptor-related protein
MBDs	Mineral and bone disorders
MCP	Monocyte chemotactic protein
MDRD	Modification of diet in renal disease
MI	Myocardial infarction
MIA	Malnutrition-inflammation-atherosclerosis complex
MRI	Magnetic resonance imaging
mtDNA	Mitochondrial DNA
NO	Nitric oxide
non-HDL-c	Non-high-density lipoprotein cholesterol
ox-LDL	Oxidized low density lipoprotein
PP	Pulse pressure
PWV	Pulse wave velocity
ROS	Reactive oxygen species
RR	Relative risk
RRT	Renal replacement therapy
SBP	Systolic blood pressure
TG	Serum triglycerides
TNF-α	Tumor necrosis factor alpha
URR	Urea Reduction Ratio
VCAM-1	Vascular cell adhesion molecule-1
VLDL	Very low-density lipoprotein

List of Tables

No.	Title	Page
	Tables of Review	
1	Stages of CKD by GFR and albuminuria category	11
2	Major changes in the key enzymes and receptors in chronic kidney disease and their impact on plasma lipid/lipoprotein levels	31
3	Risk factors for atherosclerotic cardiovascular disease in patients with chronic kidney disease	41
	Tables of Results	
1	Demographic characteristics among the studied groups	78
2	Blood pressure among the studied groups	79
3	Laboratory findings among the studied groups	80
4	Comparison between the studied groups regarding lipid profile and AIP	81
5	Carotid findings among the studied groups	83
6	Comparison according to plaques regarding AIP among the patient group	85
7	Correlations of AIP and CIMT with different variables in patient group	86
8	Correlations of AIP and CIMT with different variables in control group	88
9	Diagnostic performance of AIP in diagnosing plaques	90
10	Linear regression for AIP in predicting CIMT	92

List of Figures

No.	Title	Page
	Figures of Review	
1	Interrelationship between traditional and non-traditional risk factors and cardiovascular disease and chronic kidney disease	20
2	Logiq 7 ultrasound	73
3	Illustration of CIMT ultrasonographic measurement.	75
4	Ultrasonographic examination of common carotid IMT: normal and increased CIMT.	75
5	Plaque at common carotid artery.	76
	Figures of Results	
1	Blood pressure among the studied groups	79
2	Lipid profile among the studied groups	82
3	AIP among the studied groups	82
4	CIMT among the studied groups	83
5	Carotid plaques among the studied groups	84
6	Comparison according to plaques regarding AIP among the patient group	85
7	Correlations between AIP and CIMT in patient group	87
8	Correlations between AIP and CIMT in control group	89
9	ROC curve: AIP in diagnosing plaques among patient group	91
10	AIP distribution according to plaques among patient group	91

Introduction

Nowadays, chronic kidney disease (CKD) is recognized as a worldwide health problem with high morbidity and mortality rates, putting a significant burden on the global resources. The prevalence of CKD in the western countries is near 13%. Recent data estimate the number of patients that have end-stage renal disease (ESRD) to be more than 2 million patients all over the world (*Sathyan et al.*, 2017).

In Egypt, the estimated annual incidence of ESRD is around 74 per million and the total prevalence of patients on dialysis is 264 per million (*Ahmed et al.*, 2010).

According to KDIGO and KDOQI guidelines, CKD is defined as a heterogeneous group of disorders characterized by alterations in kidney structure and function, lasting for three months or more. The term "endstage renal disease" refers to chronic kidney failure treated with either dialysis or transplantation (*National Kidney Foundation*, 2002).

CKD is recognized as an independent risk factor for numerous adverse health outcomes including cardiovascular disease (CVD) which is the most common cause of morbidity and mortality in ESRD patients. In the western countries, data showed that CVD are responsible for hospitalizations and deaths in 40% and 50% of ESRD patients respectively. Most of CKD patients die due to CVD even before developing ESRD and beginning dialysis (*Hamad et al.*, 2012).

CVD manifestations in CKD patients are classified as myocardial (left ventricular hypertrophy and dilated cardiomyopathy) and vascular (vascular calcification, arteriosclerosis and atherosclerosis) (*Sarnak*, 2003).

Atherosclerosis is the most common risk factor for CVD. It begins years before the development of any clinical manifestations. It is considered as a complex inflammatory fibroproliferative response developing due to accumulation of the atherogenic lipoproteins in the arterial intima (*Weber and Noels*, 2011).

The first structural change that can be detected in atherosclerosis is an increase in intima-media thickness (IMT) of the artery. Studies have shown that hemodialysis (HD) patients have advanced changes in the walls of their arteries, that present as increased IMT of the carotid and femoral arteries (*Amann et al.*, 2003).

Carotid intima-media thickness (CIMT) is a widely available, safe, and reproducible measure when performed by trained and certified sonographers with standardized equipment. IMT was measured for the first time by Pignoli using B-mode ultrasound in 1986. CIMT is measured by obtaining longitudinal images of the carotid arterial walls using duplex ultrasound (*Naqvi and Lee*, 2014).

In many studies, CIMT was proven to predict the existence of CVD. Increased CIMT was discovered to be a marker of diffuse atherosclerosis and so, increased CIMT may determine individuals at high risk for coronary artery disease (CAD). As a result of these numerous studies, CIMT was introduced as a golden parameter in detection of atherosclerosis even in its early stages (*O'Leary and Polak*, 2002).

One of the other traditional parameters that is well known in detection of atherosclerosis is the lipid profile. It consists of a group of biochemical tests which are used in prediction, diagnosis and treatment of lipid-related disorders including atherosclerosis (*Weber and Noels*, 2011).

There is a lot of evidence that the concentrations of lipids {total cholesterol and triglycerides (TG)} and their

associated blood transporting lipoproteins {Low density lipoprotein cholesterol (LDL-c), high density lipoprotein cholesterol (HDL-c) and very low-density lipoprotein cholesterol (VLDL-c)} are related with the occurrence of atherosclerosis and CVD (*Cummings*, 2003).

For example, a strong association was found between the risk of atherosclerosis, high levels of LDL-c and low levels of HDL-c. Additionally, a lot of work has been done on the relationship between TG and HDL-c, and it was found that the ratio of TG to HDL-c is a strong predictor of CVD (*Gaziano et al.*, 1997, *Igweh et al.*, 2005).

The atherogenic index of plasma (AIP), calculated as {log (TG/HDL-c)}, has recently started to gain attention as a significant indicator of the risk of atherosclerosis and CVD. It is even more suitable and statistically reliable than lipid concentrations in CVD risk prediction (*Cai et al.*, 2017).

The association of TGs and HDL-c in this simple ratio theoretically reflects the balance between risk and protective lipoprotein forces, and both TGs and HDL-c are widely measured and available (*Acay et al.*, 2014).

In this study, we are trying to discover the correlation between CIMT and AIP in hemodialysis

🖎 Introduction 💝

patients in particular which could result, if found positive, in using AIP as an easy to apply, inexpensive and most importantly a non-invasive test for diagnosis of subclinical atherosclerosis in this particular group of patients so as to proceed in prevention of atherosclerosis or in deceleration of its progression, thus decreasing CV morbidity and mortality.

🖎 Lim of the Work 💝

Aim of the Work

The aim of this study is to detect the correlation between atherogenic index of plasma and carotid intimamedia thickness as an indicator of subclinical atherosclerosis in haemodialysis patients.