Role of Multi-Slice CT Angiography in the Diagnosis of lower extremity Vascular Diseases

Essay

Submitted For Partial Fulfillment of Master Degree In Radiodiagnosis

By Youssef Gamal Fayek Mentias M.B.B.CH

Supervisors

Prof. Dr.
Mohammed Zaki El-Hedek
Professor of Radiodiagnosis
Faculty of Medicine
Ain Shams University

Dr.
Dalia Zaki Zidan
Lecturer of Radiodiagnosis
Faculty of Medicine
Ain Shams University

Faculty of medicine Ain Shams University 2007

Acknowledgement

First of all, I submit all gratitude to GOD to whom I owe every success in my life.

I am so privileged and honored to have **Prof. Dr. Mohammed Zaki El-Hedek,** Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University as my supervisor. It has been great opportunity to learn from his great experience and creative ideas. I would sincerely like to express my deepest respect to him.

I would like to express my great thanks to Dr. Dalia Zaki Zidan, Lecturer of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for her great support, careful supervision and continuous advice which were cornerstone for this work.

Last but not least, I would like to confess my deepest indebt to my family for their endless assistance and encouragement.

Contents

•Introduction and aim of the work	1
•Anatomical considerations	3
•Pathology of lower extremity vascular diseases	36
•Technique of Multi Slice CT Angiography	68
•Manifestations of lower extremity vascular diseases in Multi Slice CT Angiography with illustrative cases	102
 Summary and conclusion 	154
•References	158
•Arabic summary	;

List of figures

Fig. No.	Title	Page No.
Fig. (1-1)	Arteries of thigh and knee	6
Fig (1-2)	Popliteal artery and its branches	13
Fig (1-3)	Anastomosis around knee joint	18
Fig (1-4)	Blood supply of the foot	20
Fig (1-5)	Veins of the lower limb	23
Fig (1-6)	axial slice from lower-extremities CT Angiography- lower abdominal level	26
Fig (1-7)	axial slice from lower-extremities CT Angiography- midsacral level	27
Fig (1-8)	axial slice from lower-extremities CT Angiography-midthigh level	28
Fig (1-9)	axial slice from lower-extremities CT Angiography- knee level	29
Fig (1-10)	axial slice from lower-extremities CT Angiography- leg level	30
Fig (1-11)	CT angiography of the lower limb by MIP method	31
Fig (1-12)	CT angiography of lower limb arteries after 3D reformatting	32
Fig (1-13)	Axial CT venogram obtained at thigh level	33
Fig (1-14)	Axial CT venogram obtained at popliteal level	34
Fig (1-15)	Axial CT venogram obtained at mid calf level	35
Fig. (2-1)	Types of aneurysms	48
Fig (3-1)	The three different types of computed tomographic scanners	70
Fig (3-2)	x-ray tube and detectors for a single- section and a multisection scanner	72

Fig (3-3)	Equal-width and unequal-width detector array designs.	73
Fig (3-4)	Effective detector row thickness of 4-channel multi-detector row CT system	74
Fig (3-5)	The coverage for multisection CT vs. single-section helical CT at the same pitch and section thickness	77
Fig (3-6)	The coverage for multisection CT vs. single-section helical CT in the same scan duration	77
Fig (3-7)	Isotropic and anisotropic data sets.	80
Fig (3-8)	Sagittal, coronal and oblique reformatting	91
Fig (3-9)	Cross-sectional MPR	92
Fig (3-10)	MIP rendering technique.	93
Fig (3-11)	CT angiography visualization techniques depicting the arteries of the lower leg.	95
Fig (3-12)	Shaded surface display of the abdominal aorta and iliac arteries	96
Fig (4-1)	Cross-sectional multiplanar reconstruction image showing grade 3 stenosis of external iliac artery and shows no stenosis at a distal level	104
Fig (4-2)	CTA axial cut at level of arterial wall calcifications. Stenosis is correctly graded by proper window settings	105
Fig (4-3)	Coronal MIP depicts occlusion of the right superficial femoral artery	106
Fig (4-4)	MIP image depicts severe bilateral calcifications in the iliac arteries.	107

Fig (4-5)	VR image shows 50% stenosis at the left common femoral artery and two moderate-to-high stenoses of the left superficial femoral artery.	108
Fig (4-6)	The "frosted" appearance of the superficial femoral arteries on volume rendering suggests extensive calcification.	109
Fig (4-7)	Coronal and saggital MPR show Concentric stenosis at the left common iliac artery with eccentric stenosis of the left external iliac artery	110
Fig. (4-8)	CPR image enables visualization through the calcium and identification of Arterial patency compared to MIP.	111
Fig (4-9)	MPR image showing complete right iliac artery occlusion and complete patency after placement of two stents	112
Fig. (4-10)	MIP image demonstrate bilateral long- segment occlusions of the superficial femoral arteries.	113
Fig (4-11)	Illustrations show extents of mural calcification in arterial segments	114
Fig (4-12)	Cross-sectional multiplanar reconstruction image shows arterial patency with severe calcification.	114
Fig (4-13)	VR image shows occlusion of the left iliac artery with collaterals and another image shows superficial femoral artery occlusion, with Profunda collaterals.	115
Fig(4-14)	Leriche syndrome involving both common iliac arteries	116
Fig (4-15)	VR image showing occluded left common iliac artery with a patent ilio-femoral graft.	117

Fig (1-16)	Axial image shows lack of contrast opacification of the femorofemoral bypass graft.	118
Fig (4-17)	Acute thrombosis of the femoropopliteal and trifurcation vessels.	120
Fig. (4-18)	CPR image in traumatic patient showing loss of opacification of a segment of the popliteal artery (arrow), with upper tibial fracture	122
Fig (4-19)	VR image shows a left peroneal artery disruption and pseudoaneurysm.	123
Fig. (4-20)	Axial image shows active contrast material extravasation.	123
Fig (4-21)	Axial image at the level of the knees shows right popliteal aneurysm with left popliteal occlusion	124
Fig (4-22)	Axial image of a thrombosed large false aneurysm.	125
Fig (4-23)	Frontal VR image showing bilateral common iliac artery aneurysms and diffuse ectasia of the femoral arteries	125
Fig (4-24)	Coronal MIP image showing infra-renal aortic and bilateral iliac aneurysm with active bleeding.	126
Fig (4-25)	VR image in a case of aortic dissection.	127
Fig.(4-26)	A case of advanced abdominal aortic aneurysm and consequent thrombosis of the right common iliac artery.	128

Fig. (4-27)	VR image of a case of Buerger's disease shows occlusion of right dorsalis pedis artery.	129
Fig. (4-28)	axial image reveals thickening of the aortic wall in an early case of Takayasu Arteritis	130
Fig (4-29)	Sagittal volume-rendered image shows the stenotic segment in a case of Takayasu arteritis	130
Fig. (4-30)	VR image in a case of advanced Takayasu Arteritis.	131
Fig. (4-31)	Axial image in a case of giant cell arteritis showing non specific infiltration around the left iliac arteries.	132
Fig. (4-32)	Axial, sagittal MIP and VR images in a case of adventitial cystic disease.	134
Fig (4-33)	Coronal reformatted image shows severe aortic and both common iliac arteries stenosis secondary to retroperitoneal fibrosis.	134
Fig (4-34)	Axial image shows an intra-abdominal venous malformation.	135
Fig (4-35)	VR image (posterior view) reveals left lower limb arteriovenous malformation	136
Fig (4-36)	Axial image of a case of pelvic lymphatic malformation.	137
Fig (4-37)	Axial image in a case of Klippel- Trénaunay syndrome	138
Fig (4-38)	Axial and VR images in a case of Parkes-Weber Syndrome.	139
Fig.(4-39)	Right thigh intramuscular hemangioma	140

Fig. (4-40)	Axial and Parasagittal multiplanar reformatted CT venogram showing thrombosed left popliteal vein	142
Fig. (4-41)	Axial CT venogram shows partially thrombosed left superficial femoral vein.	143
Fig. (4-42)	Axial CT venogram shows thrombosed left iliac vein with distended venous diameter.	144
Fig. (4-43)	Axial CT venography shows left popliteal vein thrombosis.	145
Fig (4-44)	Transverse section depicts right common femoral vein thrombosis with perivenous fat infiltration due to edema.	145
Fig (4-45)	Axial CT venogram shows chronic DVT in both common femoral veins.	146
Fig (4-46)	Isolated DVT clot in the right deep femoral vein.	147
Fig (4-47)	Extrinsic compression of left common iliac vein.	148
Fig (4-48)	Axial CT venogram, shows Heterogeneous venous due to early scanning.	149
fig.(4-49)	Normal lymph node and Muscular abscess mimicking DVT	150
Fig.(4-50)	DVT in cases of anatomical variations.	151
Fig. (4-51)	Axial CT venogram shows false venous filling defect caused by arterial calcification.	152
Fig (4-52)	CT venogram shows thrombosed right saphenous vein and Patent superficial varices.	153

List of tables

Table No.	Title	Page No.
Table (2-1)	Identifying lesion location by symptoms in PAD	42
Table (3-1)	Effect of reduction in scan time with MDCT on CM administration	85

List of abbreviations

2D	Two dimensional
3D	Three dimensional
ABPI	Ankle-brachial pressure index
AV	Arteriovenous
AVMs	Arteriovenous malformations
CM	Contrast medium
CPR	Curved planar reformation
СТА	Computed tomographic angiography
DSA	Digital subtraction angiography
DVT	Deep venous thrombosis
HU	Hounsfield units
IV	Intravenous
IVC	Inferior vena cava
Kv	Kilo volt
mA	mili Ampere
MDCT	Multi-detector row computed tomography
MIP	Maximum intensity projection
MPR	Multiplanar reformation
MRA	Magnetic resonance angiography
MRI	Magnetic resonance imaging

MSCT	Multislice computed tomography
PAA	Popliteal artery aneurysms
PAD	Peripheral arterial disease
PE	Pulmonary embolism
SSCT	Single slice computed tomography
SSD	Shaded Surface Display
TAO	Thromboangiitis obliterans
US	Ultrasound
VM	Venous malformations
VR	volume rendering

Role of Multi-Slice CT Angiography in the Diagnosis of lower extremity Vascular Diseases

Essay

Submitted For Partial Fulfillment Of Master Degree In Radiodiagnosis

By Youssef Gamal Fayek Mentias M.B.B.CH

Supervisors

Prof. Dr.
Mohammed Zaki El-Hedek
Professor of Radiodiagnosis
Faculty of Medicine
Ain Shams University

Dr.
Dalia Zaki Zidan
Lecturer of Radiodiagnosis
Faculty of Medicine
Ain Shams University

Faculty of medicine Ain Shams University 2006

Aim of the work

The purpose of this study is to evaluate the role of multi-slice CT angiography in the assessment of lower extremity vascular diseases

Contents

Introduction and aim of the work

Anatomical considerations

Pathology of lower extremity vascular diseases

Technique of Multi Slice CT Angiography

Manifestations of lower extremity vascular diseases in Multi Slice CT Angiography with illustrative cases

Summary and conclusion

References

Arabic summary