Role of ultrasound biomicroscopy in diagnosing various effects of eye trauma

Essay Submitted for partial fulfillment Of Master Degree (M.Sc.) in Ophthalmology

By

Ahmed Rashad Mohamed M.B., B.Ch- Zagazig University

Supervised by

Professor Dr.

Tarek M. Mahmoud Abd-Allah

Professor of Ophthalmology
Faculty of Medicine
Ain Shams University

Dr.

Azza Mohamed Ahmed Said

Lecturer of Ophthalmology
Faculty of Medicine
Ain Shams University

Faculty of Medicine
Ain Shams University

Cairo
2012

دور الفحص ألمجهري الحيوي بالموجات فوق الصوتية في تشخيص التأثيرات المتعددة لإصابات العين

رسالة توطئه للحصول على درجة الماجستير في طب وجراحة العيون مقدمه من

الطبيب/ احمد رشاد محمد

بكالوريوس الطب والجراحة-كلية الطب-جامعة الزقازيق

تحت إشراف

الأستاذ الدكتور

طارق محمد محمود عبد الله

أستاذ طب وجراحة العيون كلية الطب-جامعة عين شمس الدكتور

عزة محمد احمد سعيد

مدرس طب وجراحة العيون كلية الطب-جامعة عين شمس

> <u>كلية الطب</u> جامعة عين شمس <u>القاهرة</u> ٢٠١٢

Summary

Ultrasound biomicroscopy (UBM) is a new imaging technique that uses high frequency ultrasound (50-100 MHz), providing resolution ranging from 20-60 micrometers with a depth of penetration approximately 4mm.

There are many applications to this imaging method including visualization, localization and documentation of the anterior segment anatomy and pathology.

UBM in diagnosis of trauma shows disruption of normal appearance of intra ocular structures.

UBM can be used to detect the presence of cyclodialysis and determine its extent irrespective of optic media condition, as UBM appearance of traumatic cyclodialysis is typical and diagnostic.

UBM provides clinically useful information in the detection or delineation of anterior segment foreign bodies, and it is recommended as the preferred initial imaging step in searching for an occult foreign body in the absence of an obvious rupture of the globe.

Also UBM is useful to evaluate the tomographic features of the disrupted trabecular meshwork, iridodialysis and angle recession.

UBM combined with slitlamp biomicroscopy is useful in estimating the extent of an intracorneal haematoma and corneal

وقل مربي نردني علماً

صدق الله العظيم

سورة طه (الآية (١٤٤)

Acknowledgment

I am heartily thankful to my supervisor, *Professor Dr. Tarek M. Mahmoud Abd-Allah and Dr. Azza Mohammed Ahmed Said*, whose encouragement, guidance and support from the initial to the final level enabled me to develop an understanding of the subject.

Lastly, I offer my regards and blessings to all of those who supported me in any respect during the completion of the study.

Ahmed Rashad Mohamed

Contents

•	List of abbreviations	1
•	List of figures	2-4
•	Introduction	5-7
•	Aim of the study	8
•	Physics of high frequency ultrasound	9-13
•	Instrumentation for ultrasound biomicroscopy	14-18
•	Examination techniques	19-26
•	Normal anatomy in UBM	27-38
•	UBM findings in traumatized eyes	39-76
•	Summary	77-78
•	References	79-90
•	Arabic summary	

List of abbreviations

Amplitude scan A-scan Anterior chamber ACAnterior surface optical coherence **OCT** tomography Brightness scan B-scan Ciliary Body CB **Contact lens** CL Centimeter Cm Computerized tomography C.T Foreign body F.B **Figure** Fig Hertz Hz Intra-Ocular Foreign Body **IOFB** Megahertz MHz Millimeter Mm Magnetic Resonance Imaging MRI Micrometer μm Ultrasound biomicroscopy **UBM**

List of illustrations

Figure 1	The acoustic spectrum	10
Figure 2	Reflection and refraction of all ultrasound pulse	11
Figure 3	interactions of ultrasound with tissues	12
Figure 4	ultrasound biomicroscope	14
Figure 5	ultrasound transducer	17
Figure 6	Patient being examined by UBM	19
Figure 7	Eye cups with different diameters	20
Figure 8	Tip of the concave Transducer	21
Figure 9	eye cup in place	22
Figure 10	transducer probe	24
Figure 11	Probe orientation	25
Figure 12	radial sections of the globe	26
Figure 13	Transverse sections of the globe	26
Figure 14	UBM image of normal cornea	28
Figure 15	Normal Sclera	30
Figure 16	anterior chamber	31
Figure 17	Quantitative angle movement	32
Figure 18	Normal iris	33
Figure 19	Normal ciliary processes	35
Figure 20	Normal Zonule	36
Figure 21	Traumatic cyclodialysis	40
Figure 22	Cyclodialysis (cross section)	41
Figure 23	Disinserted ciliary body from Scleral spur	41
Figure 24	Cyclodialysis with displacement of CB & Iris	42

Figure 25	choroidal effusion	43
Figure 26	anterior bowing of the iris	43
Figure 27	Iridodialysis	43
Figure 28	persistent suprachoroidal effusion	44
Figure 29	Cyclodialysis obscured by iris	44
Figure 30	Cyclodialysis with ciliochoroidal fluid	44
Figure 31	IOFB in the supraciliary space	47
Figure 32	Glass F.B in the anterior chamber	47
Figure 33	Glass and aluminum F.B with comet tail artifacts	48
A&B		
Figure 34	Wood F.B with shadowing artifacts	48
Figure 35	Concrete F.B with shadowing artifacts	48
Figure 36	Echodense metallic F.B within AC	49
Figure 37	Intraocular metal wire	50
Figure 38	F.B in the angle	51
Figure 39	IOFB over the peripheral iris	54
Figure 40	Iridodialysis	55
Figure 41	Hyphaema	56
Figure 42	Angle recession	57
Figure 43	Corneal blood staining	58
Figure 44	Hemorrhage into anterior vitreous	59
Figure 45	Epithelial cyst	60
Figure 46	Epithelial cyst with disruption of iris	61
Figure 47	Radial section of a cyst	62
Figure 48	Radial section of a cyst in iris stroma	63
Figure 49	Radial section of a cyst filled by material	63

Figure 50	Ovoid , non loculated cyst	64
Figure 51	Transverse section of a cystic lesion	64
Figure 52	radial section of a cyst with thick wall	65
Figure 53	360 ciliochoroidal effusion	67
Figure 54	Depth of AC 3rd day after trauma	67
Figure 55	Post traumatic widening of angle	68
Figure 56	annular ciliochoroidal effusion	68
Figure 57	relationship of the Zonule to the lens & CB	69
Figure 58	Pars plana break	73
Figure 59	Pars plicata break	74
Figure 60	Detachment of pigmented epithelium	75
Figure 61	Detachment of non-pigmented epithelum	76

INTRODUCTION

Ocular trauma may cause various anterior segment pathologies resulting in visual impairment, such as hyphema, iridodialysis, and rupture of the anterior lens capsule, lens displacement, cyclodialysis, angle recession, and intraocular foreign body. A meticulous evaluation and appropriate treatment of the traumatized eye are crucial in preventing visual impairment because of ocular trauma. However, evaluation of these pathologies by clinical eye examination alone is often limited by trauma-related media opacities, hypotony, and distorted anatomy. Ultrasound biomicroscopy (UBM) allows a detailed imaging of the anterior segment up to 5 mm depth by using high-frequency (50–100 MHz) transducers (*Pavlin*, 1995).

This noninvasive technique enables us to visualize cornea, sclera, angle structures, iris, lens, ciliary body, peripheral choroid, and anterior vitreous even in the presence of opaque media (*Liebmann et al.*, 1998).

UBM can also detect small foreign bodies of various compositions, including those missed by computed tomography (CT) or B-Scan ultrasound (US) (*Deramo et al.*, 1999). In 2006, Sujata et al., reported in their study about role of UBM in imaging anterior segment foreign

bodies that the foreign bodies detection rates were 36.5% by ultrasound, 88.9% by CT scan, and 94.4% by UBM.

Therefore, UBM is a helpful tool in the evaluation of the traumatized eyes by detecting anatomic disturbances and foreign body(ies) of the anterior segment. UBM produces high-resolution axial images of the anterior globe, providing cross-sectional views of the angle in vivo similar to those of a histological section (*O'zdal et al.*, 2003).

UBM is an effective method for identifying occult zonular damage in patients with anterior segment trauma. There is a significant learning curve in the examination technique. The ability to diagnose zonular rupture preoperatively is of significant benefit to the surgeon and might reduce the chance of intraoperative complications (*Whea et al.*, 2002).

UBM was used to determine the pathogenesis of transient high myopia after blunt eye trauma. Comparison of the refraction, anterior chamber depth, lens thickness, axial length, and the UBM-determined appearance of the choroid and ciliary body during the acute stage was performed, Transient high myopia after blunt trauma founded to be caused by anatomic changes in the ciliary body and crystalline lens. The anterior shifts of the lens-iris diaphragm caused by ciliochoroidal effusion

with ciliary body edema and thickening of the crystalline lens from blunt eye trauma are involved in traumatic high myopia (*Ikeda et al.*, 2002).

UBM findings of a wider angle and absence of cyclodialysis have been reported to be significant predictors for the development of traumatic glaucoma in eyes with closed globe injury (Sihota et al., 2008).

UBM found to be very useful for diagnosing, deciding therapeutic modalities and following up the clinical courses of angle-recession patients (*Akemi et al.*, 2003).

UBM examination may be clinically helpful, especially when blood prevents accurate slit lamp examination of the anterior segment. A comparative study shows that Anterior Segment OCT (AS-OCT) measurements are significantly correlated with UBM measurements but show poor agreement with each other. It was not believed that AS-OCT can replace UBM for the quantitative assessment of the anterior chamber angle (*Netland & Singh*, 2008).

UBM can also demonstrate retained lens fragments within the posterior chamber (*Oliveira et al.*, 2006).

Aim of the study

The aim of the study was to describe the different applications of UBM and its effectiveness as recent imaging technology for diagnosing the different effects of ocular trauma.

ULTRASOUND BIOMICROSCOPY

Physics of High Frequency Ultrasound

Mechanical waves and vibrations occur over a wide range of frequencies called acoustic spectrum. Sound occupies the range from 10 Hz-20 Khz. Frequencies more than 20 KHz are the ultrasonic frequencies. From 100 KHz-1 MHz ultra sound has numerous applications, the most important of these is SONAR (sound navigation and ranging), which is the human imitation of echolocation methods of many animals (*Langevin and Chilowski*, 1916).

Frequencies between 3.5-5 MHz are used in body imaging application where significant penetration of tissues is needed. These frequencies have the ability to penetrate the tissues to a depth of 15-20 cm and still return signals of sufficient strength to form an image. As frequency increases, the ultrasound is more strongly attenuated, reducing penetration. Higher frequencies 7-10 MHz can be used in small parts imaging such as visualization of the eye, where penetration of 4-5 cm is sufficient.

Figure (1) shows the ultrasound is an acoustic wave that consists of oscillation of particles within a medium. Ultrasound is propagated as a longitudinal wave that consists of alternating compressions and rarefactions of molecules as the wave passes through a medium.