Biochemical Study on the Effect of Some Environmental Estrogen Compounds in Male Albino Rats

Thesis Submitted by

Marwa Mokhtar Abd Rabo

(M.Sc. in Biochemistry, 2001)

For the Fulfillment of the Degree of Doctor of Philosophy in Biochemistry

Supervised by

Prof. Dr. Ahmed M. Salem

Professor of Biochemistry Faculty of Science Ain Shams University Prof. Dr. Mohamed M. M.Badawi

Professor of Biochemistry National Organization for Drug Control and Research (NODCAR)

Dr. Mahmoud M. Said Abd El-Hamid

Lecturer of Biochemistry Faculty of Science Ain Shams University

Biochemistry Department Faculty of Science Ain Shams University 2012

حراسة كيميائية حيوية لتأثير بعض مركبات الأستروجين البيئية علي ذكور البيضاء

رساله مقدمه من مروه مختار عبد ربه (ماجستير الكيمياء الحيوية ٢٠٠١)

للحصول على درجة دكتوراه الفلسفة في العلوم في الكيمياء الحيوية

تحت إشراف

أ.د./ محمد محمد مصطفى بدوي

أ.د./ أحمد محمد سالم

أستاذ الكيمياء الحيوية الهـيئـة القـوميـــة للرقــابة و البحـــوث الدوائيــــــة

أستاذ الكيميـاء الحيويـــة كليـــة العلوم-جامعــة عين شمــــــس

د/ محمود محمد سعيد عبد الحميد

مدرس الكيميـــاء الحيويـــة كليــة العلـــــوم جامعة عين شمس

قسم الكيمياء الحيوية كلية العلوم- جامعة عين شمس ٢٠١٢

SUMMARY

Descriptions of endocrine disruption have largely been associated with wildlife and driven by observations documenting estrogenic, androgenic, anti-androgenic, and anti-thyroid actions. These actions, in response to exposure to ecologically relevant concentrations of various environmental contaminants, have now been established in numerous vertebrate species. However, many potential mechanisms and endocrine actions have not been studied. As with wildlife, a number of studies report an association between contaminant exposure and alterations in the development and functioning of the male reproductive system (Toppari *et al.* 1996; Sharpe and Irvine 2004). However, numerous studies also document the difficulty of establishing the link between exposure and health outcomes in human populations (Guillette, 2006).

Di-(2-ethylhexyl) phthalate (DEHP) is used in the manufacturing of a wide variety of polyvinyl chloride (PVC) products. DEHP is known to produce adverse effects on liver, kidneys, reproductive organs and endocrine system (**Akingbemi** *et al.*, 2004; **Ryu** *et al.*, 2007). In particular, DEHP was found to induce cell proliferation, suppression of apoptosis, production of reactive oxygen species (ROS), and increased oxidative DNA damage in liver (**Pogribny** *et al.*, 2008). DEHP belongs to a class of chemicals classified as the peroxisome proliferators (PP), attributed to stimulation of hepatic peroxisomes to proliferate and

Biography

Name: Marwa Mokhtar Abd Rabo

Date and Place of Birth: 3/7/1972, Cairo, Egypt

Date of Graduation: 1993

Degree Awarded: M.Sc. in Biochemistry, 2001

Grade: Ph.D. in Biochemistry

I DECLARE THAT THIS THESIS HAS BEEN COMPOSED BY MYSELF AND THE WORK THEREIN HAS NOT BEEN SUBMITTED FOR A DEGREE AT THIS OR ANY OTHER UNIVERSITY

Marwa Mokhtar Abd Rabo

Teknowledgements

I would like to express my deep thanks and sincere gratitude to Prof. Pr. Ahmed M. Salem, Professor of Biochemistry, Faculty of Science, Ain Shams University, for his endless help, constant guidance, sincere encouragement, invaluable assistance as well as profound reading of the manuscript. It is a great honor to me to work under his supervision.

It is really difficult for me to find words that can express my deep feelings, heartful gratitude and sincere appreciation towards Prof. Pr. Mohamæd M. M. Badawi, Professor of Biochemistry, National Organization for Drug Control and Research (NODCAR), for his creative thinking, valuable suggestions and instructive guidance. Without his brilliant ideas, tremendous concern and care, the performance of this work would be difficult.

I would like to express my gratitude and cordial thanks to Pr. Mahmoud M. Said, Lecturer of Biochemistry, Faculty of Science, Ain Shams University, for his enthusiastic support, valuable suggestions, revising every details and discussion of all results in this manuscript.

My deep thanks and sincere appreciation to \mathfrak{Pr} . Sahar K. Amin, Lecturer of Histopathology, National Organization for Drug Control and Research (NODCAR), for her effort and assistance guidance in accomplishing of the histopathological examinations in this study.

Biochemical Study on the Effect of Some Environmental Estrogen Compounds in Male Albino Rats

Marwa Mokhtar Abd Rabo

National Organization for Drug Control and Research

Abstract

In the present study, the effect of oral administration of low and high doses of di-(2-ethylhexyl) phthalate (DEHP; a plasticizer) and propyl paraben (PP; a preservative) to adult male rats for 2 and 4 consecutive weeks was investigated. Both compounds significantly decreased serum testosterone (T) level and in contrast increased serum estradiol (E₂), luteinizing hormone (LH), follicle stimulating hormone (FSH), as well as prolactin (PRL) levels as compared with age controls. Biochemical and histopathological results matching indicated severe liver dysfunction as demonstrated by the significant increase in serum marker enzymes, along with suppression of protein biosynthesis. A dose- and duration-dependent deterioration in kidney function was also noticed following treatment of adult male rats with both compounds. Furthermore, signs of oxidative stress induction by means of DEHP and PP were observed, which were responsible for hepatic and testicular toxicity. In conclusion, the endocrine disruption potential of 2 synthetic xenoestrogens was verified in the present model by inducing disturbances in the normal feed-back regulation of the hypothalmo-pituitary-gonadal axis probably by eliciting an and subsequent oxidative stress alteration the normal oxidant/antioxidant balance.

Key words: Di-(2-Ethylhexyl) phthalate, hormones, liver, oxidative stress, propyl paraben, testis.

Contents

	Page
List of Tables	
List of Figures	
List of Abbreviations	
Introduction and Aim of the Work	1
Chapter I: Review of Literature	3
1.1. Environmental Agents	3
1.2. Potential Effect of Endocrine Disruptor on Male Reproductive Tract	4
1.3. The Gonadotropins and the Hypothalamic-Pituitary Gonadal Axis	6
1.4. Feedback Control of Gonadotropins	10
1.5. Biosynthesis of Estrogens and Sites of Estrogen Biosynthesis in the Testis	11
1.6. Estrogen in the Male Tract	12
1.7. Distribution of Estrogen Receptors in the Male Tract	17
1.8. Role of Endocrine Disruption in Male Reproduction	20
1.9. Mechanisms of Action of Endocrine Disruptors on Hypothalamo-Pituitary-Gonadal Axis	24
1.10. Plasticizers (Phthalates)	30

1.11. Preservatives (Parabens)	43
Chapter II: Materials and Methods	
2.1. Materials	52
2.1.1. Experimental Animals	52
2.1.2. Chemicals	52
2.2. Methods	56
2.2.1. Blood Studies	56
Experiment 1. Determination of Serum Testosterone Level	56
Experiment 2. Determination of Serum 17-β Estradiol Level	60
Experiment 3. Determination of Serum Follicle-Stimulating Hormone Level	64
Experiment 4. Determination of Serum Luteinizing Hormone Level.	67
Experiment 5. Determination of Serum Prolactin Level	70
Experiment 6. Determination of Serum Aspartate Aminotransferase and Alanine Aminotransferase Activities	73
Experiment 7. Determination of Serum Alkaline Phosphate Activity	76
Experiment 8. Determination of Serum Lactate Dehydrogenase Activity	78

Experiment 9. Determination of Serum Total Protein Concentration	79
Experiment 10. Determination of Serum Albumin Concentration.	81
Experiment 11. Determination of Serum Urea Concentration.	82
Experiment 12. Determination of Serum Creatinine Concentration.	85
2.2.2. Tissue Studies	87
Experiment 1. Determination of Reduced Glutathione Level in Liver and Testis.	87
Experiment 2. Determination of Malondialdehyde Concentration in Liver and Testis.	89
Experiment 3. Determination of Total Nitric Oxide Level in Liver and Testis.	91
Experiment 4. Determination of Catalase Activity in Liver and Testis.	94
Experiment 5. Determination of Superoxide Dismutase Activity in Liver and Testis	97
Experiment 6. Determination of Total Protein Concentration in Liver and Testis	100
2.2.3. Histopathological studies	102
Statistical analysis	104
Chapter III: Results	105
Chapter IV: Discussion.	190

Chapter V: Summary	231
Chapter VI : References.	242
Arabic Summary	

List of Tables

		Page
Table (1.1)	Diester phthalates and their metabolite	35
Table (3.1)	Statistical significance of the relative weight of some body organs of control and DEHP treated rats	106
Table (3.2)	Statistical significance of serum testosterone (T), 17β-estradiol (E ₂), follicle stimulating hormone (FSH), luteinizing hormone (LH) and prolactin (PRL) levels	110
	of control and DEHP treated rats	110
Table (3.3)	Statistical significance of T/E ₂ and T/LH ratios of control and DEHP treated rats	111
Table (3.4)	Statistical significance of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) activities of control and DEHP treated rats.	118
	treated rats	110
Table (3.5)	albumin (Alb) and globulin (Glb) concentrations, as well as albumin/globulin (A/G) ratio of control and	
	DEHP treated rats	122

Table (3.6)	Statistical significance of serum urea and creatinine concentrations, as well as urea/creatinine ratio of control and DEHP treated rats.	126
Table (3.7)	Statistical significance of hepatic reduced glutathione (GSH), malondialdehyde (MDA) and nitric oxide (NO) concentrations, as well as catalase (CAT) and superoxide dismutase (SOD) activities of control and DEHP treated rats.	130
Table (3.8)	Statistical significance of testicular reduced glutathione (GSH), malondialdehyde (MDA) and nitric oxide (NO) concentrations, as well as catalase (CAT) and superoxide dismutase (SOD) activities of control and DEHP treated rats.	135
Table (3.9)	Statistical significance of relative weight of some body organs of control and PP treated rats	141
Table (3.10)	Statistical significance of serum of testosterone (T), 17β -estradiol (E ₂), follicle stimulating hormone (FSH), luteinizing hormone (LH) and prolactin (PRL) levels of control and PP treated rats.	144
Table (3.11)	Statistical significance of T/E ₂ and T/LH ratios of control and PP treated rats	145

Table (3.12)	Statistical significance of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and Lactate dehydrogenase (LDH) activities of control and PP	
	treated rats	152
Table (3.13)	Statistical significance of serum total protein (TP), albumin (Alb) and globulin (Glb) concentrations, as well as albumin/globulin (A/G) ratio of control and PP treated rats.	156
Table (3.14)	Statistical significance of serum creatinine and urea concentrations, as well as urea/creatinine ratio of control and PP treated rats.	160
Table (3.15)	Statistical significance of hepatic reduced glutathione (GSH), malondialdehyde (MDA) and nitric oxide (NO) concentrations, as well as catalase (CAT) and superoxide dismutase (SOD) of control and PP treated rats.	164
Table (3.16)	Statistical significance of testicular reduced glutathione (GSH), malondialdehyde (MDA) and nitric oxide (NO) concentrations, as well as catalase (CAT) and superoxide dismutase (SOD) activities of	4.50
	control and PP treated rats	169

List of Figures

		Page
Fig. (1.1)	Hormonal regulation of spermatogenesis	4
Fig. (1.2)	The hypothalamic-pituitary axis	7
Fig. (1.3)	Synthesis of estradiol in testis	13
Fig. (1.4)	Estrogen sources and targets in the male reproductive tract	14
Fig. (1.5)	Comparison of the structure of ER α and ER β proteins.	15
Fig. (1.6)	Model of estrogen receptors function	17
Fig. (1.7)	Summary of the likely localization of ER α , ER β and aromatase in the adult testis	20
Fig. (1.8)	Metabolism of 17- β estradiol (E2) to 2-hydroxy estrone (2-OHE1) and 16 α -hydroxyestrone (16 α -HE1)	26
Fig. (1.9)	Chemical structure of common used phthalates	31
Fig. (1.10)	Metabolic pathways for phthalates	33
Fig. (1.11)	Metabolic pathway of diethylhexylphthalate	36
Fig. (1.12)	Model of phthalate effects on factors involved in steroid synthesis	40
Fig. (1.13)	Model of phthalate mechanisms of action	42
Fig. (1.14)	The chemical structures of seven alkyl esters of p-hydroxybenzoic acid (parabens)	44
Fig. (1.15)	Metabolic routes of paraben in man	46