# SERUM VITAMIN D AND T REGULATORY CELLS IN A GROUP OF ADULTS WITH BRONCHIAL ASTHMA

#### Thesis

Submitted for Partial Fulfillment of the Master Degree in Clinical and Chemical Pathology

Submitted By

#### Lamiaa Salah Eldin abd Elsalam

MB, BCh Ain Shams University

Supervised by

#### Prof. Dr. Randa Reda Mabrouk

Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

#### **Prof. Dr. Yasser Ahmed Zeitoun**

Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

### Prof. Dr. Abeer Al-Sayed Ali Shehab

Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2013



# Acknowledgment

First of all, I wish to express my sincere thanks to **ALLAH** for his care and generosity throughout my life.

I would like to express my sincere appreciation and my deep gratitude to Prof. Dr. Randa Reda Mabrouk, Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University for her faithful supervision and guidance.

I am also deeply indebted to Prof. Dr. Yasser Ahmed Zeitoun, Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University for his great support throughout the whole work.

I would like to express my great thanks to Prof. Dr. Abeer Al-Sayed Ali Shehab, Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University for the tremendous effort she has done in the meticulous revision of this work.

Lastly but not least, I would like to thank all members in my family for pushing me forward all the time

Lamiaa Salah Eldin

# **List of Contents**

| Subject                                    | Page No. |
|--------------------------------------------|----------|
| List of Abbreviations                      | i        |
| List of Tables                             | iv       |
| List of Figures                            | vii      |
| Introduction                               | 1        |
| Aim of the work                            | 3        |
| Review of Literture                        | 4        |
| Bronchial Asthma                           | 4        |
| Regulatory T Cell                          | 48       |
| Vitamin D                                  | 87       |
| T Regulatory Cells and Vitamin D in Asthma | 112      |
| Subjects and Methods                       | 124      |
| Results                                    |          |
| Discussion                                 | 142      |
| Summary                                    | 149      |
| Recommendations                            | 151      |
| References                                 | 152      |
| Arabic Summary                             | <b>—</b> |

#### List of Abbreviations

**AHR** : Airway hyper responsiveness

**AB** : Anti- VDBP antibody

**ADAM** : Adisintegrin and metalloproteinase

**APCS** : Antigen presenting cells

ASYBUF : Assay Buffer
B<sub>10</sub> cells : regulatory B cells
HBD-2 : Human b- defensins-2
CBC : Complete blood picture
CCL21 : CC-chemokine Ligand 21
CCR7 : CC-chemokine receptor 7

**COPD** : Chronic obstructive pulmonary disease

**CR2** : Complement receptor 2

**CSIF** : cytokine synthesis inhibitory factor

CTL : cytotoxic T- Lymphocytes

**CTLA-4** : cytotoxic T- lymphocyte antigen 4

DCs : Dendritic cellsDEX : DexamethasoneDN : Double negativeDP : Double positive

**DRIs** : Dietary reference intakes

**EAE** : Experimental autoimmune encephalomyelitis

**Ebi3** : Epstein- Barr-Virus – induced gene3

**EDTA** : Ethylene diamin tetra- acetate

**ELISA** : Enzyme linked immune sorboent assays

**FEIAS** : Fluorescent enzyme immunoassays **FEV1** : Forced expiratory volume in 1 second

**FITC** : fluorescein isothio cyonate

Foxp3 : Forkhead box p3
FR :folate receptor

**FVC** : forced vital capacity

**GITR** : glucocorticoid- induced TNF receptor

GITRL : GITR ligand GSDMB : Gasdermin B

HEVS : High endothelial venulesHLA : Human leukocyte antigen

i tregs : Inducible tres

IBD : Inflammatory bowel diseese
ICOS : inducible costimulatory molecules

ICS : Inhaled Corticosteroids

**IDO** : indoleamine 2,3 dioxygenase **iGb3** : iso globotrihexosylcer amide

IL: interleukin

**ILt3** : immunoglobulin like transcript 3

IPEX : Immunodysregulation, polyendocrinopalhy and Enteropathy X-linkedITAM : immunoreceptor tyrosine- based activation motif

IUKT : Induced natural killer T cells
 LABA : Long- acting beta2 agonist
 LAP : Latency-associated peptide
 LAG3 : lymphocyte – activation gene3

LT : Leucotriens

**MHC** : Major histocompatibility complex

**MMP** : Matrix metalloproteinases

MS : Multiple sclerosis

MyD88 : Myeloid differentiation factor 88

n tregs : Natural Tregs

**NFAT—API** : nuclear factor of activated T cells-activation proten 1-

**NKT** : Natural killer T cells

**NOD2** : Nucleotide – binding oligomerization domain- containing protein 2

**NSB** : Non specific binding control

**ORMDL3** : Orosomucoid-Like3

**PAMPs** : Pathogen associated molecular patterns

PBS : phosphate buffer saline
PDC : Plasmacytoid dendritic cells
PD-L1 : programmed cell dealth ligand 1

**PE**: phycoerythrin

Pe-cy5 : Pyycoerythrin-cyanin 5
PEF : Peak expiratory flow
PG : Prostaglandins
PGI2 : Prostacyclin

**RA** : Rheumatoid arthritis

RANTES : Regulated upon Activation, Normal T- cell Expressed and Secreted

**RASTS** : Radio allergo sorbent assays **RDA** : Recommended Dietary Allowance

**ROG** : Receptor of GATA-3 **RXR** : Retinoic X receptor

**SCIT** : subcutaneous immunotherapy

**SD** : Standard deviation

**SDF** : Stromal cell- drived factor

SIT : Allergen- specifrc inmunotherapy
SLE : systemic lupus erythematosus
SLIT : Sublingual immunotherapy
SNP : Single nucleotide polymorphism

**SPF** : Sun protection factor

SSPS : Statistical package for social science
STAT : Signal transducer activator of transcription

TCR : T -cell receptor Teff : T-effector cells

**TG F-\beta** : Transforming growth factor- $\beta$ 

TH : T- helper cells Th3 : T helper 3

TLR : toll-like receptors
TMB : Tetramethylbenzidine
TNF : Tumor necrosis factor
TR1 : T regulatory 1 cells
TREGS : T regulatory cells

**TSLP** : Thymus stimulating lipoproteins

TXA2 : Thromboxane A2
UL : Upper intake level
UVB : Ultraviolet B

**VDBP** : Vitamin D binding protein

**VDR** : vitamin D receptor

VEGF : Vascular endothelial growth factorVSMC : Vascular smooth muscle cells

**WASBUF** : Wash Buffer

**WBC** : White Blood cell

 $\overline{\mathbf{x}}$ : Mean

 $\alpha$  -galcer:  $\alpha$  - galactosylceramide1,25 (OH)2D1,25- dihydroxy vitamin D25 (OH)D: 25- hydroxy vitamin D

# List of Tables

| Table No.    | Title                                           | Page No.         |
|--------------|-------------------------------------------------|------------------|
| Table (1): C | Classification of asthma according to severity  | 22               |
| Table (2): C | CD14-endotoxin interaction based on CD14 SN     | P C-159T30       |
| Table (3): 1 | Interpretation of skin test results:            | 38               |
| Table (4): I | Differential diagnosis of asthma                | 39               |
| Table (5): T | regulatory cells subtypes                       | 51               |
| Table (6): T | The DRIs for vitamin D                          | 91               |
| Table (7): 1 | Lab data of studied groups                      | 136              |
| Table (8): 1 | Lab data of subgroups according to disease seve | erity136         |
| Table (9): L | ab data of subgroups according to steroid depe  | ndence137        |
| Table (10):  | Comparison between control and asthmatic adu    | ults as regard   |
| se           | rum vitamin D                                   | 137              |
| Table (11):  | Comparison between control and asthmatic adu    | ults as regard   |
| Tr           | reg %                                           | 138              |
| Table (12):  | Comparison between steroid dependant and no     | n dependant      |
| as           | thmatic patients as regards serum vitamin D an  | d Treg           |
| fre          | equency                                         | 139              |
| Table (13):  | Comparison between patients' subgroups (subg    | group I, II and  |
| III          | () as regards serum vitamin D and Treg frequen  | cy140            |
| Table (14):  | correlations between serum vitamin D and Tre    | g %, FEV1%       |
| an           | d eosinophil absolute count                     | 140              |
| Table (15):  | correlations between Treg %, FEV1% and eosi     | inophil absolute |
| co           | unt                                             | 141              |

# List of Figures

| Fig. No.    | Title F                                            | Page No.  |
|-------------|----------------------------------------------------|-----------|
| Figure (1): | Periscope function of DCs                          | 7         |
| Figure (2): | CCR7 in the induction of tolerance to inhaled anti | igens8    |
| Figure (3): | Primary sensitization of the airways in the indu   | action of |
| allergi     | ic-type asthma                                     | 10        |
| Figure (4): | The structure of CD23                              | 14        |
| Figure (5): | Role of mast cells in asthma                       | 18        |
| Figure (6): | Immune regulation during the time course of        | allergen- |
| SIT         |                                                    | 43        |
| Figure (7): | Mechanisms of allergen-specific immunotherapy      | and the   |
| role of     | f regulatory T cells in allergic diseases          | 44        |
| Figure (8): | Model for the development and interrelations of    | different |
| T reg       | subsets                                            | 50        |
| Figure (9): | : Development of nTregs and iTregs and the         | relevant  |
| marke       | ers associated with each                           | 52        |
| Figure (10) | : Different mechanisms of Treg suppression         | 73        |
| Figure (11) | : Physiology of vitamin D                          | 92        |
| Figure (12) | Extraskeletal effects of vitamin D                 | 95        |
| Figure (13) | : Cathelicidin induction via TLRs and vitamin D.   | 98        |
| Figure (14) | : Vitamin D, antigen presentation and adaptive im  | munity101 |
| Figure (15) | : Treg in asthma                                   | 113       |
| Figure (16) | ): Representative dot plots of flow cytometry      | and the   |
| gating      | strategy used (A to D).                            | 129       |
| Figure (17) | ): Comparison between control and asthmatic a      | idults as |
| regard      | l serum vitamin D                                  | 138       |
| Figure (18) | ): Comparison between control and asthmatic a      | adults as |
| regard      | l Treg %                                           | 139       |

# **INTRODUCTION**

**B** ronchial asthma is a chronic disorder of the airways that is characterized by reversible airflow obstruction, airway inflammation, persistent airway hyperreactivity and airway remodeling (*Buc et al.*, 2009).

The etiology of asthma is complex and multifactorial. Although profound insights have been made into the pathophysiology of asthma, the exact mechanism inducing and regulating the disease is not fully understood. According to Woodruff *et al.*, asthma can be divided into at least two distinct molecular phenotypes defined by the degree of Th2 inflammation into intrinsic and extrinsic asthma (*Woodruff et al.*, 2009).

The prevalence of asthma has increased significantly since the 1970s, to reach up to 300 million worldwide affected people in 2010. In 2009, asthma caused 250,000 deaths globally. Despite this, with proper control of asthma with step down therapy, prognosis is generally good (*Lemanske & Busse*, 2010).

Naturally occurring CD4+CD25+ Tregs (nTregs) are thymic-derived. A second population of CD4+CD25+ Tregs can be induced in vitro and in vivo through antigen stimulation. Both subsets appear to regulate immune responses through the

production of IL-10 and transforming growth factor (TGF)-beta (Hawrylowicz & O'Garra, 2005; Buckner 2010). These cells have the potential to protect against the development of allergic disease and asthma, in particular (Fontenot et al., 2003; Akdis et al., 2005).

The discovery that many cells express vitamin D receptors and the recognition of widespread vitamin D insufficiency has stimulated interest in the potentially beneficial effects of vitamin D in nonskeletal conditions. The disorders in which vitamin D may play a role include cancer, infection, cardiovascular disease, schizophrenia, and immune-mediated diseases such as multiple sclerosis, insulin-dependent diabetes, and asthma (*Holick*, 2007).

Several laboratories have described the capacity of vitamin D to promote regulatory T cells (Tregs). Tregs play an important role in the control of the immune response and inhibit Th2 responses, as well as airway inflammation and airway hyper-responsiveness, which may be the key to the potential role of vitamin D in asthma. Vitamin D also acts directly on T cells to promote an IL-10-secreting Treg phenotype either alone or in concert with glucocorticoids (*Urry* et al., 2009).

# Aim of the work

The aim of this study is to determine the frequency of T regulatory cells as well as serum 250H vitamin D levels in patients with atopic asthma and to determine whether there is a correlation between both parameters and their effect on clinical impact of the disease.

# **Chapter I**BRONCHIAL ASTHMA

#### Introduction:

Asthma is a chronic inflammatory disease of the airways associated with airway hyper responsiveness (AHR), coupled with wheezing, breathlessness, chest tightening and coughing. Characteristically, the obstruction of the airways is reversible, either spontaneously or with treatment (*Barrett and Austen*, 2009).

There is a strong genetic association with atopy, the predisposition to produce IgE antibodies to environmental allergens. Major cellular components driving asthmatic reactions include mast cells, eosinophils, and T cells, with a prominent role for CD4+ Th2 cells. More recently, roles for basophils, induced natural killer T cells (iNKT cells), Th17 cells, and a number of soluble mediators, including thymus stimulating lipoproteins (TSLP), IL-25 and IL-33, have also been proposed (*Barrett and Austen*, 2009).

Although asthma is a chronic obstructive condition, it is not considered as a part of chronic obstructive pulmonary disease as this term refers specifically to combinations of disease that are irreversible such as bronchiectasis, chronic bronchitis, and emphysema (*Timothy et al.*, 2009).

#### Epidemiology:

Asthma is a serious global health problem. People of all ages throughout the world are affected by this chronic airway disorder that when uncontrolled, can place severe limits on daily life and is sometimes fatal. The prevalence of asthma is increasing in most countries, especially among children. The burden of asthma is experienced not only in terms of healthcare costs but also as lost productivity and reduced participation in family life (*Bateman et al.*, 2008).

The prevalence of asthma has increased significantly since the 1970s. In 2009, 300 million people were affected worldwide. In 2009 asthma caused 250,000 deaths globally (*Liard et al.*, 2009).

#### Immunopathogenesis:

A variable degree of broncho obstruction based on AHR and allergen-dependent mast cell degranulation together with chronic airway eosinophilia, increased mucus production, and airway remodeling sketches the typical pathologic picture of allergic bronchial asthma (*Bousquet et al.*, 2000).

This complex phenotype is believed to arise from manifold interactions of infiltrating immune cells with structural cells of the airways. These processes comprise a plethora of cells such as T cells, B cells, mast cells, and

macrophages on the one hand and smooth muscle cells, fibroblasts, and airway epithelial cells on the other hand (Wegmann, 2009).

Under physiological circumstances, the epithelium forms a highly regulated and almost impermeable barrier through the formation of tight junctions. The epithelial cell layer acts as a molecular sieve that excludes inhaled antigens and pathogens. However, some antigens can be recognized by cells of the immune system and induce an immune response. Mucosal dendritic cells (DCs) are extremely efficient sentinels in the defense against antigen challenge. They are strategically positioned within the epithelium in the basolateral space, separated from the inhaled air only by the epithelium tight junction barrier. However, DCs extend their processes between epithelial cells directly into the airway lumen. This "periscope" function provides a mechanism for continuous immune surveillance of the airway luminal surface (*Jahnsen et al.*, 2006), Figure 1 (Hammad and Lambrecht, 2008).