COLOR DOPPLER EVALUATION OF CEREBRAL-UMBILICAL PULSATILITY INDICES AND RATIO AND ITS USEFULNESS IN THE DIAGNOSIS OF INTRAUTERINE GROWTH RETARDATION.

THESIS
Submitted For Partial Fulfillment Of M.Sc. Degree In Radiodiagnosis

By
Mohamed ElSayed Kamel AbdElAziz ElSayed
(M.B.B.CH)
Faculty Of Medicine
Cairo University

Supervisors

Prof. SohaTalaat Hamed Prof. Of Radiodiagnosis Faculty Of Medicine Cairo University

Dr. Olfat Nouh Riad Ali
Assistant professor of gynecology and obstetrics
Faculty Of Medicine
Cairo University

Dr. Rasha Wessam AbdElRahman
Lecturer Of Radiodiagnosis
Faculty Of Medicine
Cairo University

Cairo University 2013

ACKNOWLEDGMENT

First, I would like to thank God who enables us to think, to search, and to conclude. No one can count the favors of God.

I wish to express my profound gratitude and deep appreciation to **Professor Dr. Soha Talaat Hamed**, Professor of radiodiagnosis, Faculty of Medicine, Cairo University, for giving me the advantage of working under her supervision, for her faithful guidance and for giving me great help for completing this work.

I am deeply indebted to **Professor Dr. Olfat Nouh Riad Ali,** Assistant Professor of obstetrics and gynecology, Faculty of Medicine, Cairo University, and **Dr. Rasha Wessam Abd ElRahman**, Lecturer of radiodiagnosis, Faculty of medicine, Cairo University for their close continuous encouragement, meticulous scientific supervision, all of them left their marks on each aspect of this work.

Many thanks to all staff members of radiology department and to my colleagues for their valuable support and help.

I would like to deeply thank my father and mother and all my family members who encouraged me and exerted all their effort in helping me to complete this work.

I'm grateful to my wife who helped me every second to finish this work and I appreciate this role.

LIST OF CONTENTS

Content			Page
Acknowledgment			I
		List of figures	Ш
		List of tables	VII
		List of abbreviation	IX
		Abstract	XI
		Introduction	1
		Aim of work	3
•	Background	Anatomy, Pathology & Pathophysiology	4
Review of literature	Chapter I	IUGR	20
Revio litera	Chapter II	Doppler Study	52
	Chapter III	The BPP	77
Patients and methodology			86
Results			90
Case presentation			109
Discussion			122
Summary & conclusion			132
References			135
Arabic summary			162

LIST OF FIGURES

T	Title		
Figure No.	Review of literature	Page	
110.	Background		
Figure (1)	Anatomy of the uterine circulation	4	
Figure (2)	Trophoblastic invasion	7	
Figure (3)	The fetal circulation showing representative oxygen saturation values.	8	
Figure (4)	Ultrasound appearance of monochorionic and dichorionic twin pregnancies at 12 weeks of gestation	17	
	Chapter I: IUGR		
Figure (5)	Fetal weight percentiles throughout gestation	22	
Figure (6)	Ultrasonographic measurement of fetal BPD, HC and AC	38	
Figure (7)	Percentiles for amniotic fluid index based on gestational age	42	
Figure (8)	Doppler velocimetry of fetal vessels	45	
Chapter II: Doppler Study			
Figure (9)	Doppler indices derived from the maximum frequency shift envelope	55	
Figure (10)	Correlation between the resistance index (RI) and the systolic/ diastolic (S/D) ratio	57	
Figure (11)	Normal Pregnancy - Development of the uterine artery	59	
Figure (12)	Normal flow velocity waveforms from the uterine artery at 24 weeks of gestation demonstrating high diastolic flow	60	
Figure (13)	Flow velocity waveform from the uterine artery at 24 weeks of gestation in a pregnancy with impaired placentation	61	
Figure (14)	Pulsatility index in the uterine artery with gestation	61	

Figure (15)	Normal flow velocity waveforms from the umbilical vein and artery at 32 weeks of gestation.	63		
Figure (16)	Normal and abnormal flow in umbilical artery	64		
Figure (17)	Normal Pregnancy - Development of the umbilical artery	64		
Figure (18)	Pulsatility index in the umbilical artery with gestation	65		
Figure (19)	Transverse view of the fetal head with color Doppler showing the circle of Willis	67		
Figure (20)	Flow velocity waveforms from the middle cerebral artery at 32 weeks of gestation	67		
Figure (21)	Brain- sparing effect seen in MCA- Increased end diastolic flow and decreased P.I.	68		
Figure (22)	Pulsatility index the fetal middle cerebral artery with gestation	68		
Figure (23)	Flow velocity waveforms from the fetal descending aorta at 32 weeks of gestation	69		
Figure (24)	Normal flow of the descending thoracic aorta in 2 nd and 3 rd trimesters	70		
Figure (25)	Pulsatility index in the fetal aorta with gestation	70		
Figure (26)	Sagittal view of the fetal thorax and abdomen showing the ductus venosus originating from the umbilical vein	72		
Figure (27)	Normal flow velocity waveforms of the ductus venosus visualized in a sagittal section through the fetal abdomen	73		
Figure (28)	Abnormal ductus venosus waveform	73		
Figure (29)	Pulsations in the umbilical vein with reversal of flow at the end of diastole in the recipient fetus of a pregnancy with twin-to-twin transfusion syndrome	76		
Chapter III: The BPP				
Figure (30)	Gestational age at which intervention occur according to biophysical profile score	83		
Figure (31)	The relation between the incidence of perinatal morbidity and the last fetal biophysical profile score (BPS)	84		
	Results			
Figure (32)	Gravidity among study population	90		

Figure (33)	Causes of IUGR among Group I	91
Figure (34)	Mode of delivery among study population	96
Figure (35)	Cause of termination	97
Figure (36)	Perinatal outcome among study population	100
Figure (37)	Overall deaths among study population	100
Figure (38)	ROC curve C/U Ratio	108
	Case Presentation	
Figure (39)	Case 1, UA spectral analysis showing reversed flow	109
Figure (40)	Case 1, MCA Doppler showing abnormally high end diastolic flow and abnormal indices	110
Figure (41)	Case 1, Fetal biometry	110
Figure (42)	Case 2, UA spectral analysis showing absent end diastolic flow	111
Figure (43)	Case 2, normal MCA waveform	112
Figure (44)	Case 2, Fetal biometry showing about 3 weeks small for date fetus with HC/AC Ratio = 0.99	112
Figure (45)	Case 3, UA Doppler showing normal waveform and Doppler indices	113
Figure (46)	Case 3, MCA Doppler showing normal waveform and Doppler indices	114
Figure (47)	Case 3, Fetal biometry showing > 6 weeks small for date fetus, HC/AC Ratio = 1.11	114
Figure (48)	Case 4, UA Doppler showing normal waveform and Doppler indices	115
Figure (49)	Case 4, MCA Doppler showing abnormally high end diastolic flow and abnormal indices	116
Figure (50)	Case 4, Fetal biometry, about 5 weeks small for date fetus, HC/AC Ratio = 1.02	116
Figure (51)	Case 4, EFW by U/S below 5 th percentile for gestational age	117
Figure (52)	Case 5, UA Doppler showing abnormally low end diastolic flow and abnormal indices	118

Figure (53)	Case 5, MCA Doppler showing abnormally high end diastolic flow and abnormal indices	119	
Figure (54)	Case 5, Fetal biometry showing about 2 weeks small for date fetus	119	
Figure (55)	Case 6, UA Doppler showing abnormally low end diastolic flow and abnormal indices	120	
Figure (56)	Case 6, MCA Doppler showing normal waveform and Doppler indices	121	
Figure (57)	Case 6, Fetal biometry, about 2 weeks small for date fetus	121	
	Discussion		
Figure (58)	Management of IUGR	131	

LIST OF TABLES

	Title	
Table No.	Review of literature	Page
110.	Chapter III: The BPP	
Table (1)	Biophysical profile scoring: technique and interpretation	79
Table (2)	Interpretation of fetal biophysical profile score results and recommended clinical management	82
	Patients and Methodology	
Table (3)	Apgar score	89
	Results	
Table (4)	Comparison between statistical significance of UA PI, MCA PI, C/U Ratio, HC/AC Ratio, BPP and AFI as regards patient and control groups	92
Table (5)	UA PI among study population	92
Table (6)	MCA PI among study population	93
Table (7)	C/U Ratio among study population	93
Table (8)	BPP among study population	94
Table (9)	HC/AC Ratio among study population	94
Table (10)	AFI among study population	95
Table (11)	Perinatal outcome among study population	99
Table (12)	Overall deaths among study population	99

Table (13)	Perinatal outcome of the study population according to values of umbilical artery pulsatility index	101
Table (14)	Relation between UA PI and overall deaths	101
Table (15)	Perinatal outcome of the study population according to values of middle cerebral artery pulsatility index	102
Table (16)	Relation between MCA PI and overall deaths	102
Table (17)	Perinatal outcome of the study population according to values of cerebral-umbilical pulsatility ratio	103
Table (18)	Relation between C/U Ratio and overall deaths	103
Table (19)	Perinatal outcome of the study population according to BPP	104
Table (20)	Relation between BBP and overall deaths	104
Table (21)	Perinatal outcome of the study population according to values of HC/AC Ratio	105
Table (22)	Relation between HC/AC Ratio and overall deaths	105
Table (23)	Perinatal outcome of the study population according to AFI	106
Table (24)	Relation between AFI and overall deaths	106
Table (25)	Correlation between different predictors	107
Table (26)	Comparison between Validity of UA PI, MCA PI, C/U Ratio as screening tests for IUGR	107

LIST OF ABBREVIATIONS

AC	Abdominal Circumference
AEDF	Absent End Diastolic Flow
AFI	Amniotic Fluid Index
AFV	Amniotic Fluid Volume
BPD	Bi-Parietal Diameter
BPM	Beats Per Minute
BPP	Biophysical Profile
CNS	Central Nervous System
CRL	Crown Rump Length
CS	Cesarean Section
CST	Contraction Stress Test
CTG	Cardiotocography
C/U Ratio	Cerebro-Umbilical Ratio
CVS	Cardiovascular System
DV	Ductus Venosus
ECG	Electrocardiograph
EFW	Estimated Fetal Weight
FGR	Fetal Growth Restriction.
FHR	Fetal Heart Rate
FL	Femur Length
FN	False Negative
FP	False Positive
FVW	Flow Velocity Waveform
НС	Head Circumference
IUFD	Intra-Uterine Fetal Death
IUGR	Intra-Uterine Growth Restriction
LBW	Low Birth Weight
LMP	Last Menstrual Period
MCA	Middle Cerebral Artery
NICU	Neonatal Intensive Care Unit
NPV	Negative Predictive Value
NST	Non-Stress Test
PI	Pulsatility Index
PIH	Pregnancy Induced Hypertension
PPV	Positive Predictive Value
RDS	Respiratory Distress Syndrome
REDF	Reversed End Diastolic Flow
RI	Resistive Index
S/D	Systolic/Diastolic Ratio
SD	Standard Deviation
SFH	Symphyseal Fundal Height
SGA	Small For Gestational Age.
TN	True Negative

TP	True Positive
UA	Umbilical Artery
UPI	Utero-placental insufficiency
U/S	Ultra-Sound
VD	Vaginal Delivery
WHO	World Health Organization

ABSTRACT

BACKGROUND:

Multi-vessel Doppler ultrasonography and biophysical profile scoring are the principal surveillance tools in pregnancies complicated by fetal growth restriction. The interpretation of these tests done concurrently may be complex.

OBJECTIVE:

To determine and compare the sensitivity, specificity and diagnostic accuracy of the fetal umbilical artery, middle cerebral artery pulsatility indices and their ratio for the prediction of adverse perinatal outcome in intrauterine growth restricted fetuses.

DESIGN:

Prospective cohort study.

PATIENTS and METHODS:

Thirty patients were studied that had been diagnosed clinically and ultrasonographically as intra-uterine growth restriction (IUGR). All patients in the study underwent uniform antenatal assessment protocol that includes a four component biophysical profile score, umbilical artery (UA) and middle cerebral artery (MCA) Doppler ultrasound studies. These were conducted either twice weekly or daily according to the severity of the condition. Thirty normal pregnancies were also studied as a control group. Patients were delivered by caesarean section or vaginally.

OUTCOME:

Predictive value of UA and MCA pulsatility indices and ratio in diagnosing and following IUGR as well as their ability to predict adverse perinatal outcome.

RESULTS:

Abnormal UA PI was found in 18 cases, 17 cases (56.7%) of the IUGR group and only 1 case (3.3%) of the control group.

Abnormal MCA PI was found in 24 cases, 18 cases (60%) of the IUGR group and 6 cases (20%) of the control group.

Abnormal C/U Ratio was found in 21 cases, 20 cases (66.7%) of the IUGR group and only 1 case (3.3%) of the control group.

Sensitivity, specificity, PPV, NPV and diagnostic accuracy were 56.6%, 96.6%, 94.4%, 90.6% and 76.6% for the UA PI, 60%, 80%, 75%, 66.6% and 66.6% for the MCA PI and 66.6%, 96.6%, 95.2%, 74.3% and 81.6% for the C/U Ratio.

UA PI and C/U Ratio were well correlated with adverse fetal perinatal outcome.

CONCLUSION:

Among the Doppler indices, the C/U ratio is a better predictor of IUGR fetuses and adverse perinatal outcome than either the UAPI or the MCA PI alone, with a high specificity and PPV. However, measurement of the UAPI (among all the Doppler indices) is enough to detect IUGR per se, probably because UAPI is a direct reflection of the resistance in the placental vascular bed. The MCA PI alone is not a reliable indicator.

We also concluded that multi-vessel Doppler ultrasonography and BPP scoring combined use is likely to be complementary in determining the optimum time of delivery and predicting adverse fetal perinatal outcome.

Keywords:

Doppler ultrasonography - middle cerebral artery - umbilical artery - pulsatility index - Biophysical profile - intra-uterine growth retardation - Fetal growth restriction.

INTRODUCTION

Intrauterine growth restriction (IUGR) is a syndrome, characterized by failure of the fetus to attain its normal growth potential (*Malhotra etal.*, 2006). Intrauterine growth restriction (IUGR) occurs in 3-10% of all pregnancies (*Turan etal.*, 2007).

IUGR is challenging because of the difficulties in reaching a definitive diagnosis of the cause and planning management. IUGR is associated not only with a marked increased risk in perinatal mortality and morbidity but also with long-term outcome risks. Combinations of fetal biometry, amniotic fluid volume, heart rate patterns, arterial and venous Doppler, and biophysical variables allow a comprehensive fetal evaluation of IUGR (*Dikshit*, 2011).

The best screening tests have to be accessible, available and relatively inexpensive. They must also provide reproducible results and be acceptable to patients. (Mc Leod, 2008).

Multi-vessel Doppler examination is able to accurately depict this progression in IUGR fetuses. Dynamic fetal variables (movement, tone, breathing and amniotic fluid volume) utilized for BPP and heart rate reactivity remain normal longer in the progression of IUGR Fetuses. (*Baschat & Harman*, 2011).

An adequate placental perfusion is crucial for the normal growth and well being of the fetus and newborn. The blood flow through the placenta can be compromised in a variety of clinical situations, always causing important damage to the gestation. Placental insufficiency promotes compensatory hemodynamic fetal changes including blood flow redistribution towards essential fetal organs, at the expense of others. The fetal compensatory response results in increased blood flow to the brain, also called the "brain sparing effect". On the other hand, there is reduction in fetal growth, of liver size, and a reduction or absence of fat deposit. (Da Silva et al., 2007).

Doppler usage has guided obstetric decision-making, particularly in growth-restricted fetuses. Controversy continues as to which is the best fetal vessel for deciding pregnancy continuation, vis-à-vis termination. Evidence from authorities recommend umbilical artery (UA) Doppler to be good, but supplementation of other vessels such as middle cerebral artery (MCA) or ductus venosus, may add value to decision-making (Malhotra et al., 2006).

The challenge in monitoring pregnancies complicated by placental insufficiency remains today, as no method of diagnosis or follow-up is complete. The dilemma involves essentially premature babies since the effects of prematurity need to be highly considered. Research is still needed to help finding the best time of delivery, when the effects of fetal hypoxia become worse than those of the low gestational age and weight (*Da Silva et al.*, 2007).