

Hepatic Dysfunction In Renal Transplant Recipients

Thesis

Submitted By
Ahmed Moustafa Taha Mohamed
(M.B.B.Ch, Dip.)

In partial fulfillment of Master Degree in **Nephrology**

SUPERVISED BY

Prof. Dr. Essam Mohamed Khedr

Prof. of Internal medicine and nephrology Ain Shams faculty of medicine

Prof. Dr. Ahmed Aziz Abd El Nabi

Prof. of Internal medicine and nephrology Ain Shams faculty of medicine

Dr. Sahar Mahmoud Shawky

Assist. Prof. of Internal medicine and nephrology Ain Shams faculty of medicine

<u>Acknowledgment</u>

To **GOD**, I owe all thanks and gratitude, for giving me help and power to complete this work.

Special thanks to **Prof. Dr. Essam Mohamed Khedr**, professor of internal medicine and nephrology, faculty of medicine, Ain Shams University, for his support, guidance, positive attitude and assurance, working with him caused me a real pleasure.

I'm deeply thankful and grateful to **Prof. Dr. Ahmed Aziz Abd El Nabi**, professor of internal medicine and nephrology, faculty of medicine, Ain Shams University, for his patience, continuous support, and help, invaluable expert and scientific guidance.

I'm so grateful and thankful to **Dr. Sahar Mahmoud Shawky** assistant professor of internal medicine and nephrology, faculty of medicine, Ain Shams University, she offered me an unrelenting support, beside her friendly kind attitude and endless patience and guidance, which add to me a lot both in science and character, without her support this work would have never been realized.

To my parents and parents-in-law, who contained me with love, kindness.

At last, but not least, I would like to thank my dear wife for her love, courage, patience, and constant support.

Contents

Title	Page	
Abbreviations	III	
Tables	V	
Figures	VIII	
Introduction & Aim of work	1	
Review of literature		
Renal transplantation	7	
Liver anatomy	21	
• Hepatic dysfunction after transplantation.	34	
Prognostic Score Models	161	
Patients and methods		
Results		
Discussion		
Summary and conclusion		
References		
Arabic summary	284	

Abbreviations Table

AIDS	Acquired immune deficiency syndrome
ALG	Antilymphocyte globulin
ALT	Alanine aminotransferases
AST	Aspartate aminotransferase
ATG	Anti thymocyte globulin
ATP	Adenosine triphosphate
ATT	Antituberculous treatment
AZT	Azathioprine
BPAR	Biopsy Proven Acute Rejection
CAN	Chronic allograft nephropathy
CFT	Complement Fixation Test
CMV	Cytomegalovirus
CsA	Cyclosporine A
CT	Computed tomography
CTP	Child-Turcotte-Pugh
CTP	Child-Turcotte-Pugh score
DEAFF	Detection of early antigen fluorescent foci
DM	Diabetes mellitus
EBV	Epstein-Barr virus
ELISA	Enzyme-linked immunosorbent assay
ETVR	End of treatment virological response
FK-506	Tacrolimus
G-CSF	Granulocyte colony-stimulating factor
GFR	Glomerular filtration rate
GFR	Glomerular Filtration Rate
GIT	Gastrointestinal tract
GM-CSF	Granulocyte-macrophage colony-stimulating
	factor
HBV	Hepatitis B virus
HCC	Hepatocellular carcinoma
HCV	Hepatitis C Virus
HEL	Human embryo lung
HHV	Human Herpes Virus

HIV	Human immune deficiency virus
HSV	Herpes simplex virus
IFT	Indirect immunofluorescence test
IgG	Immunoglobulin G
IgM	Immunoglobulin M
JASN	Journal of American Society of Nephrology
LD	Lactate dehydrogenase
LFTs	Liver Function Tests
MELD	Model for End-Stage Liver Disease
MMF	Mycophenolate mofetil
NAFLD	nonalcoholic fatty liver disease
NASH	nonalcoholic steatohepatitis
NODAT	New Onset Diabetes After Transplantation
NRH	Nodular regenerative hyperplasia
PCR	Polymerase chain reaction.
PTDM	Post transplant Diabetes Mellitus
RIA	Radioimmunoassay
SGOT	Serum glutamic oxaloacetic transaminase
SGPT	Serum glutamic pyruvic transaminase
SVR	Sustained virological response
TH0	T Helper 0 cells
TH2	T Helper 2 cells
UNOS	United Network for Organ Sharing
VZV	Varicella zoster Virus

Tables

Table	No.	Title	Page
Table	٠.١	Metabolism related to the zonal	28
		location of the hepatocyte	
Table	۲.	Tests for Hepatitis C Virus	50
Table	.٣	Medications That Stimulate or	142
		Inhibit the Cytochrome P-450	
Table	٤.	Child-Turcotte-Pugh score	162
Table	٠.٥	Interpretation of Child-Turcotte-	163
		Pugh score	
Table	٦.	Number of patients in each group	177
		according to the hepatic dysfunction	
		criteria.	
Table	٠٧	Shows the demographic data of the	178
		recipients in two groups	
Table	.۸	Shows some risk factors pre	179
		transplantation to the recipients in tw	
		groups	
Table	.٩	Shows the demographic data of the	180
		donors in two groups.	
Table	٠١.	Comparison of the etiology of renal	180
		failure among the two groups	
Table	. 11	Mean serum alanine transferase	182
		level (IU/liter) at comparable time	
		points during study	
Table	١٢.	Mean serum Aspartate transaminase	183
		level (IU/liter) at comparable time	
		points during study	
Table	١٣.	Mean serum bilirubin levels (mg /	184
		dl) at comparable time points	
		during study	
Table	۱٤.	Mean serum albumin levels (mg / dl	185
) at comparable time points during	
		study	
Table	.10	Mean hemoglobin values (gm /dl)	186

	at comparable time points during	
	the study	
Table . \ \	Mean blood white blood cells (WBCs) values (103 /mm3) at comparable time points during the study	187
Table . \ \	Mean blood platelets values (103 /mm3) at comparable time points during the study	188
Table . \ A	Morning cyclosporine A (CsA) dose (mg) at comparable time points during the study	189
Table . 19	Night cyclosporine A (CsA) dose (mg) at comparable time points during the study	190
Table . Y •	Mean blood cyclosporine A (CsA) trough level (ng / ml) at comparable time points during the study	191
Table . Y Y	Total daily Tacrolimus dose (mg) at comparable time points during the study	192
Table .۲۲	Mean serum Tacrolimus level (ng / ml) at comparable time points during the study	193
Table .۲۳	Total daily Sirolimus dose (mg) at comparable time points during the study	194
Table . Y &	Total daily Mycophenolate Mofetil (MMF) dose (gm) at comparable time points during the study	195
Table . Yo	Total daily Azathioprine (mg) dose at comparable time points during the study	196
Table .۲٦	Total daily Corticosteroid dose (mg) at comparable time points	197

	during the study	
Table . ۲۷		198
	among the two studied groups	
Table . ۲۸		199
	transplantation	
Table .۲۹	-	200
Table . " •	Comparison of rejection in the two	201
	groups.	
Table .٣١	State of graft at last follows up.	202
Table . "Y	•	203
	State of patient at last follow up	
Table . ""	HCV effect on Medical	203
	Complications Post transplantation.	
Table ۳٤	Comparison of HCV effect on	204
	rejection in the two groups.	
Table . "°		204
	and graft survival.	
Table .٣٦		205
	Modification of Diet in Renal	
	Disease (MDRD) formula among	
	the two studied groups	
Table . ٣٧	Comparison of Duration (months)	206
	of anti tuberculosis drugs use	
	among patients between the two	
	groups	
Table .٣٨	Comparison of No. of	206
	transplantation regimens among the	
	two studied groups	
Table .٣٩	1	208
	regimens among the two studied	
	groups	
Table .٤٠	Comparison of the incidence of	209
	different liver complications among	
	recipients in the hepatic group.	

Figures

Figure No	Title	Page
Figure .\	Comparison of the etiology of renal	181
	failure among the two groups	
Figure .7	Mean serum alanine transferase level	182
	ALT (IU/liter) at comparable time	
	points during study	
Figure . ^{\tau}	Mean serum Aspartate transaminase	183
	level AST(IU/liter) at comparable time	
	points during study	
Figure .5	Mean serum bilirubin level (IU/liter) at	184
	comparable time points during study	
Figure .°	Mean serum albumin levels (g / dl) at	185
	comparable time points during study	
Figure .7	Mean hemoglobin values (gm/dl) at	186
	comparable time points during the stud	
Figure . Y	Mean blood WBCs values (10 ³ / mm ³) a	187
	comparable time points during the stud	
Figure .^	Mean blood platelets values (10 ³ / mm ³)	188
	at comparable time points during the	
	study.	
Figure .9	Morning cyclosporine A (CsA) dose	189
	(mg) at comparable time points during	
	the study	
F .'•	Night cyclosporine A(CsA) dose (mg)	190
igure	comparable time points during the stud	
	:	
F .''	Mean serum cyclosporine A (CsA)	191
igure	level (ng / ml) at comparable time	
	points during the study	
F .17	Total daily Tacrolimus dose (mg) at	192
igure	comparable time points during the	
	study	
F .18	Mean serum Tacrolimus level (ng / ml)	193

	igure	at comparable time points during the	
	iguie	study	
F	.1 ٤	Total daily Sirolimus dose at comparab	194
1.			174
_	igure	time points during the study	40=
F	.10	Total daily Mycophenolate Mofetil	195
	igure	(MMF) dose at comparable time	
		points during the study	
F	.۱٦	Total daily Azathioprine dose at	196
	igure	comparable time points during the stud	
F	.17	Total daily Corticosteroids dose at	197
	igure	comparable time points during the stud	
F	.14	Comparison of induction therapy amon	198
	igure	the two studied groups	
F	.19	Comparison of Medical Complications	199
	igure	Post transplantation	
F	٠٢.	Comparison of Viral infection.	200
	igure	_	
F	۲۱.	Comparison of rejection in the two	201
	igure	groups.	
F	. ۲۲	Comparison of No. of transplantation	207
	igure	regimens among the two studied group	
F	.۲۳	Comparison of the incidence of differen	210
	igure	liver complications among recipients in	
		the hepatic group pre and post	
		transplantation	
Ь		P	

Introduction

Renal transplantation has become the treatment of choice for most patients with end-stage renal disease. Marked improvements in early graft survival and long-term graft function have translated into kidney transplantation being a more cost-effective alternative to dialysis (**Bradley**, **2010**).

Liver disease has emerged as an important cause of morbidity and mortality in renal transplant recipients. Liver insufficiency is the cause of death in up to 28% of long-term survivors after renal transplantation (**Gheith et al, 2007**).

Elevation of the levels of the hepatic transaminases associated with discrete alterations in hepatic function is common post transplant and is usually a transient and self-limiting manifestation of drug toxicity. More severe manifestations of liver disease may require further investigation and modification of the immunosuppressive regimen (William et al, 2005).

Viral infection is an important cause of hepatic complications Post transplantation (**Ojo et al, 1998**).

Hepatitis C virus (HCV) infection is currently the major cause of chronic liver disease following kidney transplantation. The presence of HCV infection has been found to negatively affect the morbidity and mortality rates in patients on dialysis, in spite of that, it seems that kidney transplantation is a reasonable treatment option after a careful pretransplant evaluation (**Einollahi**, **2010**).

Alanine transferase is a good marker of histologic hepatic lesion in HCV-infected Renal Transplant patients and, therefore, liver biopsy can be avoided in patients with persistently normal Alanine transferase (**Perez et al**, **2005**).

HCV (Hepatitis C virus) infected transplant recipients with abnormal liver function have inferior survival rates. HCV infection in renal transplants is associated with greater rates of proteinuria and Chronic allograft nephropathy (Mahmoud et al, 2004).

HBV (Hepatitis B virus) related liver complications can present as de novo infection, acute flare in patients with chronic infection, chronic hepatitis, cirrhosis, or hepatocellular carcinoma. The adverse impact of HBV infection on clinical outcomes has been reported by different investigators (**Tak Mao Chan ,2010**).

HBV infection decreased patient survival earlier than HCV and that HCV decreased graft survival more significantly than HBV. Both HBV and HCV were associated with rapid progression of chronic allograft nephropathy. HBV was the strongest risk factor for mortality compared with HCV, acute rejection episode, diabetes mellitus, or other hazardous factors (Ingsathit, et al, 2007).

Renal transplant patients infected concomitantly with HBV and HCV present a significantly lower long-term patient survival (Corrêa et al, 2003).

Herpes simplex viral hepatitis should be considered in immunocompromised persons with elevated serum transaminases without evidence of fulminant hepatic necrosis (**Duckro et al, 2006**).

Infection due to cytomegalovirus (CMV) is the most frequent opportunistic infection following renal transplantation. It is usually asymptomatic.

Cytomegalovirus disease causes fever, leucopenia, thrombocytopenia and slightly elevated transaminases (Pérez-Valentín et al, 2002).

Hepatotoxicity induced by immunosuppressants is difficult to evaluate since these drugs are sometimes used to treat liver diseases, or in combination with other drugs that can also cause hepatotoxicity, In addition, immunosuppressant therapy can favor the development of infections, which by themselves can cause liver damage, or reactivate latent chronic viral hepatitis (**Toscano et al, 2010**).

In a study using regimen of immunosuppression in renal transplantation composed of cyclosporine or (tacrolimus), mycophenolate, and steroid immunosuppression, in 50% of all patients serum alanine transferase (ALT) was elevated, There were more alanine transferase increases in patients on cyclosporine more than those who were on tacrolimus (Kahu et al, 2005).

Dose-dependent cyclosporine-induced hepatic dysfunction was observed early post-transplant. Neither tacrolimus- nor sirolimus-associated hepatic dysfunction was dose-dependent. Hepatic dysfunction had no significant impact

on either patient or graft survival; however, this finding may be due to the relatively short duration of follow up (Gheith et al, 2007).

Azathioprine is a drug commonly used for the immunosuppression in renal transplantation. Hepatotoxicity is a rare, but important complication of this drug (Romagnuolo et al, 1998).

Mycophenolate mofetil is a good alternative agent in special situations like acute/chronic liver diseases with elevated transaminases (**Srivastava et al, 2004**).

Tuberculosis occurs at higher rates in renal transplant recipients than in the general population. It would be desirable to use isoniazid prophylaxis in renal transplant recipients at risk for reactivation of tuberculosis; yet many transplant centers do not routinely employ isoniazid prophylaxis because they perceive transplant recipients to be an enhanced risk of hepatotoxicity from isoniazid (Antony et al, 1997).

The Model for End-Stage Liver Disease (MELD) score is a numerical scale, ranging from 6 (less ill) to 40 (the most