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ABSTRACT

Dalia Selim Louis, “Simulation and modeling of nanowire Transistors,”
Doctor of Philosophy dissertation, Ain Shams University, 2012.

Scaling challenges and performance are directing the research into new
device structures in the nanoscale regime. Among these devices are the silicon
nanowire transistors that had attracted broad attention from both the semiconductor
industry and the academic researchers. This is attributable to its improved
electrostatic control of the channel and consequent suppression for the short-
channel effects. For the design and optimization of nanowire transistors numerical
quantum-based device simulator is needed that helps to understand its physics and
further enhance its behavior. It is worth mentioning that both computational
efficiency and high accuracy, taking physical effects into consideration, are crucial
in building a simulator.

The main objective of this work is to build a full numerical simulator for
cylindrical nanowire transistors under MATLAB environment that can be used in
the investigation of the device’s properties and output characteristics with efficient
simulation time. This simulator is based on the effective mass approximation and
utilizes the cylindrical coordinate system in order to take the advantage of the
symmetry in the ¢ — direction, thus, an isotropic effective mass has been introduced
in the simulator. The objectives of this thesis are: 1) Investigating the quantization
effects in nanowire transistors using a 1D self-consistent Poisson — Schrddinger
solver in conjunction with a semi-classical current model; 2) Examining the upper
performance limit of the transistor (ballistic case) through proposing a 2D numerical
simulator that uses the mode space approach where the Non-Equilibrium Green’s
Function (NEGF) is used to solve the transport equation; 3) Studying the non-
coherent transport via including a phenomenological model to the simulator.
Accordingly, a complete simulator is achieved that has the great advantage of
simulation time reduction while keeping high level of precision

Key Words:  SNWTs, NEGF, Mode space, Isotropic effective mass.
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