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ABSTRACT 

Dalia Selim Louis, “Simulation and modeling of nanowire Transistors,” 

Doctor of Philosophy dissertation, Ain Shams University, 2012. 

 

Scaling challenges and performance are directing the research into new 

device structures in the nanoscale regime. Among these devices are the silicon 

nanowire transistors that had attracted broad attention from both the semiconductor 

industry and the academic researchers. This is attributable to its improved 

electrostatic control of the channel and consequent suppression for  the short-

channel effects. For the design and optimization of nanowire transistors numerical 

quantum-based device simulator is needed that helps to understand its physics and 

further enhance its behavior. It is worth mentioning that both computational 

efficiency and high accuracy, taking physical effects into consideration, are crucial 

in building a simulator. 

The main objective of this work is to build a full numerical simulator for 

cylindrical nanowire transistors under MATLAB environment that can be used in 

the investigation of the device’s properties and output characteristics with efficient 

simulation time. This simulator is based on the effective mass approximation and 

utilizes the cylindrical coordinate system in order to take the advantage of the 

symmetry in the    direction, thus, an isotropic effective mass has been introduced 

in the simulator. The objectives of this thesis are: 1) Investigating the quantization 

effects in nanowire transistors using a 1D self-consistent Poisson – Schrödinger 

solver in conjunction with a semi-classical current model; 2) Examining the upper 

performance limit of the transistor (ballistic case) through proposing a 2D numerical 

simulator that uses the mode space approach where the Non-Equilibrium Green’s 

Function (NEGF) is used to solve the transport equation; 3) Studying the non-

coherent transport via including a phenomenological model to the simulator. 

Accordingly, a complete simulator is achieved that has the great advantage of 

simulation time reduction while keeping high level of precision 
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