



# LIFE CYCLE ASSESSMENT OF CEMENT INDUSTRY IN EGYPT – ENVIRONMENTAL IMPACT ASSESSMENT

BY

#### ABDURRAHMAN MOHAMED AHMED ALI AWAD

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

# LIFE CYCLE ASSESSMENT OF CEMENT INDUSTRY IN EGYPT – ENVIRONMENTAL IMPACT ASSESSMENT

# BY ABDURRAHMAN MOHAMED AHMED ALI AWAD

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

Under the supervision of

Prof. Dr. Moheeb El Saied Ibrahim

Professor of Construction Engineering and Management Department of Structural Engineering Faculty of Engineering, Cairo University **Dr. Hesham Maged Osman**Associate Professor
Department of Structural Engineering
Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

# LIFE CYCLE ASSESSMENT OF CEMENT INDUSTRY IN EGYPT – ENVIRONMENTAL IMPACT ASSESSMENT

# BY ABDURRAHMAN MOHAMED AHMED ALI AWAD

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

Approved by the
Examining Committee

Pro. Dr. Moheeb El Saied Ibrahim, Thesis Main Advisor
Cairo University

Dr. Hesham Maged Osman, Thesis Main Advisor
Cairo University

Dr. Mohamed Abdel Lateef Bakry, Member
Cairo University

Dr. Khaled Mohamed Nassar, Member

**Dr. Khaled Mohamed Nassar**, Member The American University in Cairo

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016 Engineer: AbdurRahman Mohamed Ahmed Ali Awad

Date of Birth: 15 / 8 / 1987 Nationality: Egyptian

E-mail: abdurrahman.awad@gmail.com

Phone: 01065863146

Address: Damietta, Fareskour, Meet El Sheoukh

Registration Date: 1/3/2011
Awarding Date: //2016
Degree: Master of Science
Department: Structural Engineering



**Supervisors:** 

Prof. Dr. Moheeb El Saeid Ibrahim

Dr. Hesham Maged Osman

**Examiners:** 

Prof. Dr. Moheeb El Saeid Ibrahim

Dr. Hesham Maged Osman

Dr. Mohamed Abdel Lateef Bakry (Previous Planning Manager at Social Solidarity Office)

Dr. Khaled Mohamed Nassar (The American University in Cairo)

**Title of Thesis:** 

LIFE CYCLE ASSESSMENT OF CEMENT INDUSTRY IN EGYPT – ENVIRONMENTAL IMPACT ASSESSMENT

**Key Words:** Cement, Environment, Life Cycle Assessment, Environmental

**Impact** 

#### **Summary:**

The objective of this thesis is to understand the reality of grey cement industry in Egypt in terms of environmental and energy aspects through a life cycle assessment with reference to worldwide average performance in addition to providing useful suggestions towards more sustainable practices. This thesis has concluded the highest environmental impacts of cement industry in Egypt are fuel consumption, electrical consumption, and CO emissions. Finally, this thesis will provide suggestions for future researches, recommendations for cement producers, the Egyptian governments, and Non-Governmental Organizations.

### Acknowledgments

I would like to acknowledge all the support provided by Cairo University, Faculty of Engineering's professors, staff, and administration. Special thanks to my direct supervisors Prof. Dr. Moheeb El Saied and Dr. Hesham Maged Osman for their great efforts throughout my journey to complete this thesis. Many thanks to Dr. Ibrahim Abdel Rasheed and Dr. Mohamed Bakry for their constructive review and feedback.

I would like also to acknowledge the support of Eng. Ahmed AbdelMonteleb Mohamed Ali, Assistant Lecturer at the Faculty of Engineering at Assiut University in Egypt, in using SimaPro software.

Also, I would like to thank Mr. Cashion East, Technical Specialist at Pre-Sustainability Organization, for his support in using SimaPro software.

In addition, I am truly thankful for all the support and trust my family and friends have given to me. Special thanks to my mother, whome I always look at as a role model, and my two brothers and my sister, whome I respect and strive to make them proud.

Most importantly, I would like to recognize my wife's support that was the strongest motive to finish this thesis. I could have done nothing without her love and support.

## **Dedication**

Dedicated to my father's soul, may God bless him with all mercy, to my mother, and to my wife and soul mate Dr. Wesam Reda.

## **Table of Contents**

| 1. INTRODUCTION                                                  | 1  |
|------------------------------------------------------------------|----|
| 1.1. General Background                                          | 1  |
| 1.2. What is Life Cycle Assessment (LCA)?                        | 4  |
| 1.2.1. Definition                                                |    |
| 1.2.2. Phases of an LCA                                          |    |
| 1.2.2.1. Goal and scope definition                               | 4  |
| 1.2.2.2. Life cycle inventory                                    |    |
| 1.2.2.3. Impact assessment                                       |    |
| 1.2.2.4. Interpretation of the results                           | 5  |
| 1.2.3. Approaches of an LCA                                      | 5  |
| 1.2.3.1. Cradle-to-grave study                                   | 5  |
| 1.2.3.2. Cradle-to-gate study                                    | 5  |
| 1.2.3.3. Specific parts of the life cycle study                  | 5  |
| 1.2.4. Applications                                              | 5  |
| 1.2.5. Software Tools                                            | 6  |
| 1.2.6. Limitations                                               | 6  |
| 1.2.7. SimaPro Eco-Points                                        |    |
| 1.3. Research Objectives                                         | 7  |
| 1.3.1. Objective                                                 |    |
| 1.3.2. Scope                                                     |    |
| 1.4. Thesis Organization                                         | 8  |
| 2. LITERATURE REVIEW                                             | 9  |
| 2.1. What Does Cement Industry Consist of?                       | 9  |
| 2.1.1. Quarrying                                                 | 9  |
| 2.1.2. Raw Materials Preparation                                 | 9  |
| 2.1.3. Kiln Operations                                           | 11 |
| 2.1.4. Clinker Cooling                                           | 12 |
| 2.1.5. Cement Milling                                            | 12 |
| 2.1.6. Storage and Dispatch                                      | 12 |
| 2.2. INNOVATIVE SOLUTIONS OF EGYPTIAN CEMENT INDUSTRY CHALLENGES | 13 |
| 2.3. TRADITIONAL PROCESS VERSUS ALTERNATIVE TECHNOLOGIES IN USA  | 15 |
| 2.4. Environmental & Economic Performance of Cement & Concrete   | 17 |
| 2.5. LCA Measuring Environmental Impacts of Bio-Concrete         | 19 |
| 2.6. LCI of Portland Cement Manufacture in USA                   |    |
| 2.7. DECREASING CO <sub>2</sub> Emissions Europe's Cement        | 22 |
| 2.8. LCA of Cement Industry in Malaysia                          |    |
| 2.9. EFFECT OF FUEL TYPE USED IN EGYPTIAN CEMENT INDUSTRY        | 25 |

| 2.10. Environmental Impact of switching to Coal/Pet-Coke in Egypt         | 27 |
|---------------------------------------------------------------------------|----|
| 3. RESEARCH FRAME WORK                                                    | 29 |
| 3.1. WHAT DOES THIS RESEARCH PROVIDE?                                     | 29 |
| 3.2. GENERAL METHODOLOGY                                                  |    |
| 3.3. DETAILED RESEARCH METHODOLOGY                                        | 31 |
| 3.3.1. Defining Work Scope                                                | 31 |
| 3.3.1.1. Following a Standard Reference                                   | 31 |
| 3.3.1.2. Selecting an LCA Approach                                        | 32 |
| 3.3.1.3. Selecting a Common Production Process                            | 33 |
| 3.3.2. Creating Data Inventory                                            | 33 |
| 3.3.2.1. Sampling & Data Quality                                          |    |
| 3.3.2.2. Identifying Major Environmental Aspects                          |    |
| 3.3.2.3. Identifying Inputs and Outputs                                   |    |
| 3.3.3. Impact Assessment Techniques                                       |    |
| 3.3.3.1. Using SimaPro Technique for Impact Assessment                    |    |
| 3.3.3.2. Using Risk Matrix Technique for Impact Assessment                |    |
| 3.3.4. Evaluating Opportunities for Improvement:                          | 38 |
| 4. LCA OF CEMENT PRODUCTION IN EGYPT                                      | 39 |
| 4.1. Goal                                                                 | 39 |
| 4.2. Scope                                                                |    |
| 4.3. Inventory Analysis                                                   | 40 |
| 4.3.1. Major Environmental Aspects of Cement Industry                     | 40 |
| 4.3.1.1. Dust Emissions                                                   | 41 |
| 4.3.1.2. Harmful Gases Emissions                                          | 43 |
| 4.3.1.3. Power Consumption                                                | 44 |
| 4.3.1.4. Raw Materials Consumption                                        | 45 |
| 4.3.2. Inputs                                                             | 46 |
| 4.3.2.1. Raw Materials                                                    | 46 |
| 4.3.2.2. Energy & Power                                                   | 48 |
| 4.3.3. Outputs                                                            | 52 |
| 4.3.3.1. Dust Emissions                                                   | 52 |
| 4.3.3.2. Gases Emissions                                                  | 57 |
| 4.3.4. Normalization of Dust & Gases Emissions                            |    |
| 4.4. IMPACT ASSESSMENT                                                    |    |
| 4.4.1. How will data inventory be integrated in impact assessment?        |    |
| 4.4.2. Category Definition and Characterization                           |    |
| 4.4.3. Normalization and Valuation                                        |    |
| 4.4.4. Contribution to Environmental Categories (Assigning Probabilities) | 73 |

| 1111011                                                                                                         | nalization to Worldwide Averages (Assigning & Analyzing Severity)                                                                             | 74                   |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 4.4.5.1.                                                                                                        | Water                                                                                                                                         | 76                   |
| 4.4.5.2.                                                                                                        | Heating Calorific Values                                                                                                                      | 76                   |
| 4.4.5.3.                                                                                                        | Slag                                                                                                                                          | 78                   |
| 4.4.5.4.                                                                                                        | Alternative Fuel                                                                                                                              | 79                   |
| 4.4.5.5.                                                                                                        | Electricity                                                                                                                                   | 80                   |
| 4.4.5.6.                                                                                                        | Limestone & Clay                                                                                                                              | 81                   |
| 4.4.5.7.                                                                                                        | Gypsum                                                                                                                                        | 83                   |
| 4.4.5.8.                                                                                                        | Particulate Dust & Gases Emissions                                                                                                            | 84                   |
| 4.4.6. Impa                                                                                                     | act Assessment Results (Risk Matrix)                                                                                                          | 86                   |
| 4.5. Opportu                                                                                                    | NITIES FOR IMPROVEMENT                                                                                                                        | 88                   |
|                                                                                                                 |                                                                                                                                               |                      |
| 5. INTERPRET                                                                                                    | TATION, SUMMARY, AND RECOMMENDATIONS                                                                                                          | 91                   |
|                                                                                                                 | TATION, SUMMARY, AND RECOMMENDATIONS                                                                                                          |                      |
| 5.1. Interpre                                                                                                   |                                                                                                                                               | 91                   |
| <ul><li>5.1. INTERPRE</li><li>5.2. SUMMAR</li></ul>                                                             | ETATION                                                                                                                                       | 91                   |
| <ul><li>5.1. INTERPRE</li><li>5.2. SUMMAR</li><li>5.3. RECOMM</li></ul>                                         | ETATIONY                                                                                                                                      | 91<br>93             |
| <ul><li>5.1. INTERPRE</li><li>5.2. SUMMAR</li><li>5.3. RECOMM</li><li>5.3.1. Reco</li></ul>                     | ETATIONYENDATIONS                                                                                                                             | 91<br>93<br>94       |
| <ul><li>5.1. INTERPRE</li><li>5.2. SUMMAR</li><li>5.3. RECOMM</li><li>5.3.1. Reco</li><li>5.3.2. Reco</li></ul> | ETATION  Y  ENDATIONS  ommendations for Cement Producers  ommendations for the government                                                     | 91<br>93<br>94<br>94 |
| 5.1. INTERPRE<br>5.2. SUMMAR<br>5.3. RECOMM<br>5.3.1. Reco<br>5.3.2. Reco<br>5.3.3. Reco                        | ETATION Y ENDATIONS ommendations for Cement Producers                                                                                         | 91949494             |
| 5.1. INTERPRE<br>5.2. SUMMAR<br>5.3. RECOMM<br>5.3.1. Reco<br>5.3.2. Reco<br>5.3.3. Reco<br>5.3.4. Reco         | ETATION  Y  ENDATIONS  commendations for Cement Producers  commendations for the government  commendations for Non-Governmental Organizations | 919394949494         |

## **List of Tables**

| Table Number | Table Title                                                                                                                 | Page |
|--------------|-----------------------------------------------------------------------------------------------------------------------------|------|
| Table [1-1]  | Egyptian Cement Factories                                                                                                   | 2    |
| Table [2-1]  | Final Composition of Typical Portland cement                                                                                | 12   |
| Table [2-2]  | Classification of inputs and outputs for the four Alternatives of manufacturing cement into environmental impact categories | 16   |
| Table [2-3]  | Summary of Potential Measures and GHG Reductions                                                                            | 17   |
| Table [2-4]  | LCA Single Score Comparison between Bio-Concrete and Concrete                                                               | 19   |
| Table [2-5]  | Comparison of selected products produced at Cluster West in 2009                                                            | 22   |
| Table [2-6]  | SimaPro comparison between environmental impacts of producing OPC using Coal fuel, Oil Fuel, and Gas Fuel                   | 24   |
| Table [2-7]  | Environmental Impact Assessment of Project Aspects at the Stage of Operation                                                | 27   |
| Table [2-8]  | CO2 Emissions' Scenarios of Using Fuel Oil Compared to Coal and Petcoke                                                     | 28   |
| Table [3-1]  | An example of Probability Calculation in Risk Matrix Technique                                                              | 37   |
| Table [3-2]  | An example of Severity Calculation in Risk Matrix Technique                                                                 | 37   |
| Table [4-1]  | Typical Physical Properties of CKD                                                                                          | 41   |
| Table [4-2]  | Chemical Composition of CKD using X-ray fluorescence                                                                        | 42   |
| Table [4-3]  | Harmful Gases Emissions Aspects                                                                                             | 43   |
| Table [4-4]  | Different Power Sources Aspects                                                                                             | 45   |
| Table [4-5]  | Raw Materials Consumption in 2013                                                                                           | 46   |

| <b>Table Number</b> | Table Title                                                                                                             | Page |
|---------------------|-------------------------------------------------------------------------------------------------------------------------|------|
| Table [4-6]         | Worldwide Average Raw Materials Consumption                                                                             | 47   |
| Table [4-7]         | Percentage Usage of Electricity in Main Stages of Production                                                            | 48   |
| Table [4-8]         | Energy and Power Consumption in major stages of production in 2013                                                      | 49   |
| Table [4-9]         | AF Consumption in 2013                                                                                                  | 50   |
| Table [4-10]        | CO <sub>2</sub> Emissions Sequestered with AF Substitution Percentages in 2013                                          | 51   |
| Table [4-11]        | Annual average air pollution (PM10) in some governorates in Egypt (2003-2011)                                           | 53   |
| Table [4-12]        | Modified Maximum limits of dust and gases emissions from cement plants according to Egyptian law                        | 53   |
| Table [4-13]        | Comparison of NOx, SO2, and Dust Emissions of Mergheb Cement<br>Plant in Libya with four International Standard Limits  | 54   |
| Table [4-14]        | Average Dust Emission of RM, BP, and CM during 2013                                                                     | 55   |
| Table [4-15]        | Average Raw Mills, By-Pass, and Cement Mills Dust Emission in tons/ton of cement during 2013                            | 56   |
| Table [4-16]        | CO2 emissions resulting from sectors' consumption of petroleum products & natural gas in Egypt 2010/2011                | 57   |
| Table [4-17]        | Maximum limits of gases emission from cement plants resulted from burning fuels according to Egyptian law # 4 year 1994 | 58   |
| Table [4-18]        | Modified Maximum limits of dust and gases emissions from cement plants according to Egyptian law                        | 58   |
| Table [4-19]        | Average Gases Emission during 2013                                                                                      | 59   |

| Table Number | Table Title                                                                                                                  | Page |
|--------------|------------------------------------------------------------------------------------------------------------------------------|------|
| Table [4-20] | Average RMs & Gases Emission in tons during 2013                                                                             | 60   |
| Table [4-21] | Explanation of Terms of Normalized Emissions Equation                                                                        | 61   |
| Table [4-22] | Parameters Necessary to calculate normalized emissions in stacks                                                             | 62   |
| Table [4-23] | Dust and Gases calculations and Deviation from Governmental Standards                                                        | 63   |
| Table [4-24] | Impact Categories in CML 2000 Methodology as Explained in the Handbook on Life Cycle Assessment by Guinee, Jeroen B., et al. | 66   |
| Table [4-25] | Estimation of relative contribution of inputs and outputs to impact categories                                               | 73   |
| Table [4-26] | Studied Plant Environmental Utilization against Worldwide Average<br>Utilization                                             | 75   |
| Table [4-27] | Different Fuels Shares in Europe for the year 2006 compared to their Kcal/Kg                                                 | 77   |
| Table [4-28] | Shares of different cement types production in Europe                                                                        | 78   |
| Table [4-29] | AF Materials Consumption Shares in 2013 and their average calorific values                                                   | 80   |
| Table [4-30] | Egyptian Limestone & Clay Chemical analysis against Mexican's                                                                | 82   |
| Table [4-31] | Mexican Quarries classifications of limestone based on CaCO3 & CaO content                                                   | 82   |
| Table [4-32] | Risk Matrix Estimating Environmental Valuation of inputs and outputs                                                         | 86   |
| Table [4-33] | Risk Ranking of Inventory Items on Selected Impact Categories                                                                | 87   |

| <b>Table Number</b> | Table Title                                                                                                                | Page |
|---------------------|----------------------------------------------------------------------------------------------------------------------------|------|
| Table [4-34]        | Technical & Economic Aspects of Suggested Opportunities for Improvement Relative to Major Environmental Aspects of the LCA | 88   |

## **List of Figures**

| Figure Number | Figure Title                                                                                                                                                          | Page |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure [1-1]  | Top 15 cement producers in the world during 2014                                                                                                                      | 2    |
| Figure [2-1]  | Summary of Cement Manufacturing Processes                                                                                                                             | 10   |
| Figure [2-2]  | Preheating & Pre-calcining Processes                                                                                                                                  | 11   |
| Figure [2-3]  | Bees Overall Performance Results                                                                                                                                      | 18   |
| Figure [2-4]  | Process Energy Consumption Shares in US Cement Industry                                                                                                               | 20   |
| Figure [2-5]  | Particulate Dust Emission Shares in US Cement Industry                                                                                                                | 21   |
| Figure [2-6]  | Environmental Impact Categories Comparison between two Egyptian<br>Cement Plants as one is producing cement using Coal and the other is<br>using other oils and gases | 25   |
| Figure [2-7]  | Damage Assessment of the two Egyptian Cement Plants (one is<br>Producing cement using Coal and the other is using other oils and<br>gases)                            | 26   |
| Figure [3-1]  | Methodology Sequential Steps                                                                                                                                          | 31   |
| Figure [3-2]  | Cement Life Cycle & system boundaries for this LCA                                                                                                                    | 32   |
| Figure [3-3]  | Cement Process Inputs & Outputs and Indicators                                                                                                                        | 35   |
| Figure [4-1]  | Environmental Aspects at Every Stage of Cement Production                                                                                                             | 40   |
| Figure [4-2]  | Inputs & Outputs to SimaPro LCA                                                                                                                                       | 68   |
| Figure [4-3]  | SimaPro Characterization                                                                                                                                              | 69   |
| Figure [4-4]  | SimaPro Normalization                                                                                                                                                 | 71   |

| Figure Number | Figure Title                                                                            | Page |
|---------------|-----------------------------------------------------------------------------------------|------|
| Figure [4-5]  | Allocation of environmental impacts for each step of cement manufacturing process       | 72   |
| Figure [4-6]  | Percentage of AF substitution in the Egyptian plant under study since the project start | 79   |